501 research outputs found

    Geographica: A Benchmark for Geospatial RDF Stores

    Full text link
    Geospatial extensions of SPARQL like GeoSPARQL and stSPARQL have recently been defined and corresponding geospatial RDF stores have been implemented. However, there is no widely used benchmark for evaluating geospatial RDF stores which takes into account recent advances to the state of the art in this area. In this paper, we develop a benchmark, called Geographica, which uses both real-world and synthetic data to test the offered functionality and the performance of some prominent geospatial RDF stores

    CryptDB: A Practical Encrypted Relational DBMS

    Get PDF
    CryptDB is a DBMS that provides provable and practical privacy in the face of a compromised database server or curious database administrators. CryptDB works by executing SQL queries over encrypted data. At its core are three novel ideas: an SQL-aware encryption strategy that maps SQL operations to encryption schemes, adjustable query-based encryption which allows CryptDB to adjust the encryption level of each data item based on user queries, and onion encryption to efficiently change data encryption levels. CryptDB only empowers the server to execute queries that the users requested, and achieves maximum privacy given the mix of queries issued by the users. The database server fully evaluates queries on encrypted data and sends the result back to the client for final decryption; client machines do not perform any query processing and client-side applications run unchanged. Our evaluation shows that CryptDB has modest overhead: on the TPC-C benchmark on Postgres, CryptDB reduces throughput by 27% compared to regular Postgres. Importantly, CryptDB does not change the innards of existing DBMSs: we realized the implementation of CryptDB using client-side query rewriting/encrypting, user-defined functions, and server-side tables for public key information. As such, CryptDB is portable; porting CryptDB to MySQL required changing 86 lines of code, mostly at the connectivity layer
    • …
    corecore