3,625 research outputs found

    Towards a Scalable Hardware/Software Co-Design Platform for Real-time Pedestrian Tracking Based on a ZYNQ-7000 Device

    Get PDF
    Currently, most designers face a daunting task to research different design flows and learn the intricacies of specific software from various manufacturers in hardware/software co-design. An urgent need of creating a scalable hardware/software co-design platform has become a key strategic element for developing hardware/software integrated systems. In this paper, we propose a new design flow for building a scalable co-design platform on FPGA-based system-on-chip. We employ an integrated approach to implement a histogram oriented gradients (HOG) and a support vector machine (SVM) classification on a programmable device for pedestrian tracking. Not only was hardware resource analysis reported, but the precision and success rates of pedestrian tracking on nine open access image data sets are also analysed. Finally, our proposed design flow can be used for any real-time image processingrelated products on programmable ZYNQ-based embedded systems, which benefits from a reduced design time and provide a scalable solution for embedded image processing products

    FPGA based remote code integrity verification of programs in distributed embedded systems

    Get PDF
    The explosive growth of networked embedded systems has made ubiquitous and pervasive computing a reality. However, there are still a number of new challenges to its widespread adoption that include scalability, availability, and, especially, security of software. Among the different challenges in software security, the problem of remote-code integrity verification is still waiting for efficient solutions. This paper proposes the use of reconfigurable computing to build a consistent architecture for generation of attestations (proofs) of code integrity for an executing program as well as to deliver them to the designated verification entity. Remote dynamic update of reconfigurable devices is also exploited to increase the complexity of mounting attacks in a real-word environment. The proposed solution perfectly fits embedded devices that are nowadays commonly equipped with reconfigurable hardware components that are exploited to solve different computational problems

    Multi-task Implementation for Image Reconstruction of an AER Communication

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring spikes between bio-inspired chips. Such systems may consist of a hierarchical structure with several chips that transmit spikes among them in real time, while performing some processing. There exist several AER tools to help in developing and testing AER based systems. These tools require the use of a computer to allow the processing of the event information, reaching very high bandwidth at the AER communication level. We propose to use an embedded platform based on multi-task operating system to allow both, the AER communication and the AER processing without a laptop or a computer. We have connected and programmed a Gumstix computer to process Address- Event information and measured the performance referred to the previous AER tools solutions. In this paper, we present and study the performance of a new philosophy of a frame-grabber AER tool based on a multi-task environment, composed by the Intel XScale processor governed by an embedded GNU/Linux system.Ministerio de Ciencia e Innovación TEC2006-11730-C03-0

    Design of Digital Advanced Systems Based on Programmable System on Chip

    Get PDF
    This chapter fills up an advanced analysis of the state-of-the-art design in programmable SoC systems, giving a critical overall vision for every designer to implement real time operating systems and concurrent processing. The content of the chapter is divided in the next four main sections. First the evolution timeline of FPGA based systems is covered from its beginning until the last AP SoC chips. They are complex devices and it is necessary to have a well-known understanding to utilise them in the more efficient form possible. The more important advance digital systems structures and architectures are described. The embedded AP SoCs are analysed and main design methodologies are covered, focusing in hardware and co-design strategies. In this section is described the development of a real open source application that covers the fundamental parts in the design of a SoC system, ranging from the hardware development until the software design involving the embedded operating system and the user interface application. Finally, the system described in the last section is tested in a real scientific experiment and the results are evaluated

    An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

    Get PDF
    Chapitre 12 http://www.intechopen.com/download/pdf/pdfs_id/1574

    Performance evaluation over HW/SW co-design SoC memory transfers for a CNN accelerator

    Get PDF
    Many FPGAs vendors have recently included embedded processors in their devices, like Xilinx with ARM-Cortex A cores, together with programmable logic cells. These devices are known as Programmable System on Chip (PSoC). Their ARM cores (embedded in the processing system or PS) communicates with the programmable logic cells (PL) using ARM-standard AXI buses. In this paper we analyses the performance of exhaustive data transfers between PS and PL for a Xilinx Zynq FPGA in a co-design real scenario for Convolutional Neural Networks (CNN) accelerator, which processes, in dedicated hardware, a stream of visual information from a neuromorphic visual sensor for classification. In the PS side, a Linux operating system is running, which recollects visual events from the neuromorphic sensor into a normalized frame, and then it transfers these frames to the accelerator of multi-layered CNNs, and read results, using an AXI-DMA bus in a per-layer way. As these kind of accelerators try to process information as quick as possible, data bandwidth becomes critical and maintaining a good balanced data throughput rate requires some considerations. We present and evaluate several data partitioning techniques to improve the balance between RX and TX transfer and two different ways of transfers management: through a polling routine at the userlevel of the OS, and through a dedicated interrupt-based kernellevel driver. We demonstrate that for longer enough packets, the kernel-level driver solution gets better timing in computing a CNN classification example. Main advantage of using kernel-level driver is to have safer solutions and to have tasks scheduling in the OS to manage other important processes for our application, like frames collection from sensors and their normalization.Ministerio de Economía y Competitividad TEC2016-77785-

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC
    corecore