399 research outputs found

    Randomized and efficient time synchronization in dynamic wireless sensor networks: a gossip-consensus-based approach

    Get PDF
    This paper proposes novel randomized gossip-consensus-based sync (RGCS) algorithms to realize efficient time correction in dynamic wireless sensor networks (WSNs). First, the unreliable links are described by stochastic connections, reflecting the characteristic of changing connectivity gleaned from dynamicWSNs. Secondly, based on the mutual drift estimation, each pair of activated nodes fully adjusts clock rate and offset to achieve network-wide time synchronization by drawing upon the gossip consensus approach. The converge-to-max criterion is introduced to achieve a much faster convergence speed. The theoretical results on the probabilistic synchronization performance of the RGCS are presented. Thirdly, a Revised-RGCS is developed to counteract the negative impact of bounded delays, because the uncertain delays are always present in practice and would lead to a large deterioration of algorithm performances. Finally, extensive simulations are performed on the MATLAB and OMNeT++ platform for performance evaluation. Simulation results demonstrate that the proposed algorithms are not only efficient for synchronization issues required for dynamic topology changes but also give a better performance in term of converging speed, collision rate, and the robustness of resisting delay, and outperform other existing protocols

    A scheme for robust distributed sensor fusion based on average consensus

    Get PDF
    We consider a network of distributed sensors, where each sensor takes a linear measurement of some unknown parameters, corrupted by independent Gaussian noises. We propose a simple distributed iterative scheme, based on distributed average consensus in the network, to compute the maximum-likelihood estimate of the parameters. This scheme doesn't involve explicit point-to-point message passing or routing; instead, it diffuses information across the network by updating each node's data with a weighted average of its neighbors' data (they maintain the same data structure). At each step, every node can compute a local weighted least-squares estimate, which converges to the global maximum-likelihood solution. This scheme is robust to unreliable communication links. We show that it works in a network with dynamically changing topology, provided that the infinitely occurring communication graphs are jointly connected

    Machine Learning Based Applications for Data Visualization, Modeling, Control, and Optimization for Chemical and Biological Systems

    Get PDF
    This dissertation report covers Yan Ma’s Ph.D. research with applicational studies of machine learning in manufacturing and biological systems. The research work mainly focuses on reaction modeling, optimization, and control using a deep learning-based approaches, and the work mainly concentrates on deep reinforcement learning (DRL). Yan Ma’s research also involves with data mining with bioinformatics. Large-scale data obtained in RNA-seq is analyzed using non-linear dimensionality reduction with Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP), followed by clustering analysis using k-Means and Hierarchical Density-Based Spatial Clustering with Noise (HDBSCAN). This report focuses on 3 case studies with DRL optimization control including a polymerization reaction control with deep reinforcement learning, a bioreactor optimization, and a fed-batch reaction optimization from a reactor at Dow Inc.. In the first study, a data-driven controller based on DRL is developed for a fed-batch polymerization reaction with multiple continuous manipulative variables with continuous control. The second case study is the modeling and optimization of a bioreactor. In this study, a data-driven reaction model is developed using Artificial Neural Network (ANN) to simulate the growth curve and bio-product accumulation of cyanobacteria Plectonema. Then a DRL control agent that optimizes the daily nutrient input is applied to maximize the yield of valuable bio-product C-phycocyanin. C-phycocyanin yield is increased by 52.1% compared to a control group with the same total nutrient content in experimental validation. The third case study is employing the data-driven control scheme for optimization of a reactor from Dow Inc, where a DRL-based optimization framework is established for the optimization of the Multi-Input, Multi-Output (MIMO) reaction system with reaction surrogate modeling. Yan Ma’s research overall shows promising directions for employing the emerging technologies of data-driven methods and deep learning in the field of manufacturing and biological systems. It is demonstrated that DRL is an efficient algorithm in the study of three different reaction systems with both stochastic and deterministic policies. Also, the use of data-driven models in reaction simulation also shows promising results with the non-linear nature and fast computational speed of the neural network models

    Design of Wireless Communication Networks for Cyber-Physical Systems with Application to Smart Grid

    Get PDF
    Cyber-Physical Systems (CPS) are the next generation of engineered systems in which computing, communication, and control technologies are tightly integrated. On one hand, CPS are generally large with components spatially distributed in physical world that has lots of dynamics; on the other hand, CPS are connected, and must be robust and responsive. Smart electric grid, smart transportation system are examples of emerging CPS that have significant and far-reaching impact on our daily life. In this dissertation, we design wireless communication system for CPS. To make CPS robust and responsive, it is critical to have a communication subsystem that is reliable, adaptive, and scalable. Our design uses a layered structure, which includes physical layer, multiple access layer, network layer, and application layer. Emphases are placed on multiple access and network layer. At multiple access layer, we have designed three approaches, namely compressed multiple access, sample-contention multiple access, and prioritized multiple access, for reliable and selective multiple access. At network layer, we focus on the problem of creating reliable route, with service interruption anticipated. We propose two methods: the first method is a centralized one that creates backup path around zones posing high interruption risk; the other method is a distributed one that utilizes Ant Colony Optimization (ACO) and positive feedback, and is able to update multipath dynamically. Applications are treated as subscribers to the data service provided by the communication system. Their data quality requirements and Quality of Service (QoS) feedback are incorporated into cross-layer optimization in our design. We have evaluated our design through both simulation and testbed. Our design demonstrates desired reliability, scalability and timeliness in data transmission. Performance gain is observed over conventional approaches as such random access

    The Kuramoto model in complex networks

    Get PDF
    181 pages, 48 figures. In Press, Accepted Manuscript, Physics Reports 2015 Acknowledgments We are indebted with B. Sonnenschein, E. R. dos Santos, P. Schultz, C. Grabow, M. Ha and C. Choi for insightful and helpful discussions. T.P. acknowledges FAPESP (No. 2012/22160-7 and No. 2015/02486-3) and IRTG 1740. P.J. thanks founding from the China Scholarship Council (CSC). F.A.R. acknowledges CNPq (Grant No. 305940/2010-4) and FAPESP (Grants No. 2011/50761-2 and No. 2013/26416-9) for financial support. J.K. would like to acknowledge IRTG 1740 (DFG and FAPESP).Peer reviewedPreprin

    Deep Reinforcement Learning for the Velocity Control of a Magnetic, Tethered Differential-Drive Robot

    Get PDF
    The ROBOPLANET Altiscan crawler is a magnetic-wheeled, differential-drive robot being explored as an option to aid, if not completely replace, humans in the inspection and maintenance of marine vessels. Velocity control of the crawler is a crucial part in establishing trust and reliability amongst its operators. However, thanks to the crawler's elongated, magnetic wheels and umbilical tether, it operates in a complex environment rich with nonlinear dynamics which makes control challenging. Model-based approaches for the control of a robot that aim to mathematically formalize the physics of the system require an in-depth knowledge of the domain. Reinforcement learning (RL) is a trial-and-error-based approach that can solve control problems in nonlinear systems. To accommodate for high-dimensionality and continuous state spaces, deep neural networks (DNNs) can be used as nonlinear function approximators to extend RL, creating a method known as deep reinforcement learning (DRL). DRL coupled with a simulated environment provides a way for a model to learn physics-naive control. The research conducted in this thesis explored the efficacy of a DRL algorithm, proximal policy optimization (PPO), to learn the velocity control of the Altiscan crawler by modeling its operating environment in a novel, GPU-accelerated simulation software called Isaac Gym. The approaches evaluated the error between measured base velocities of the crawler as a result of the actions provided by the DRL model and target velocities in six different environments. Two variants of PPO, standard and recurrent, were compared against the inverse velocity kinematics model of a differential-drive robot. The results show that velocity control in simulation is possible using PPO, but evaluation on the real crawler is needed to come to a meaningful conclusion.M.S
    corecore