4 research outputs found

    07041 Abstracts Collection -- Power-aware Computing Systems

    Get PDF
    From January 21, 2007 to January 26, 2007, the Dagstuhl Seminar 07041``Power-aware Computing Systems\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and discussed ongoing work and open problems. This report compiles abstracts of the seminar presentations as well as the seminar results and ideas, providing hyperlinks to full papers wherever possible

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Glucose-powered neuroelectronics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-164).A holy grail of bioelectronics is to engineer biologically implantable systems that can be embedded without disturbing their local environments, while harvesting from their surroundings all of the power they require. As implantable electronic devices become increasingly prevalent in scientific research and in the diagnosis, management, and treatment of human disease, there is correspondingly increasing demand for devices with unlimited functional lifetimes that integrate seamlessly with their hosts in these two ways. This thesis presents significant progress toward establishing the feasibility of one such system: A brain-machine interface powered by a bioimplantable fuel cell that harvests energy from extracellular glucose in the cerebrospinal fluid surrounding the brain. The first part of this thesis describes a set of biomimetic algorithms and low-power circuit architectures for decoding electrical signals from ensembles of neurons in the brain. The decoders are intended for use in the context of neural rehabilitation, to provide paralyzed or otherwise disabled patients with instantaneous, natural, thought-based control of robotic prosthetic limbs and other external devices. This thesis presents a detailed discussion of the decoding algorithms, descriptions of the low-power analog and digital circuit architectures used to implement the decoders, and results validating their performance when applied to decode real neural data. A major constraint on brain-implanted electronic devices is the requirement that they consume and dissipate very little power, so as not to damage surrounding brain tissue. The systems described here address that constraint, computing in the style of biological neural networks, and using arithmetic-free, purely logical primitives to establish universal computing architectures for neural decoding. The second part of this thesis describes the development of an implantable fuel cell powered by extracellular glucose at concentrations such as those found in the cerebrospinal fluid surrounding the brain. The theoretical foundations, details of design and fabrication, mechanical and electrochemical characterization, as well as in vitro performance data for the fuel cell are presented.by Benjamin Isaac Rapoport.Ph.D
    corecore