1,775 research outputs found

    Utilizing Android and the Cloud Computing Environment to Increase Situational Awareness for a Mobile Distributed Response

    Get PDF
    Maintaining an accurate Common Operational Picture (COP) is a strategic requirement for efficient and successful missions in both disaster response and battlefield scenarios. Past practices include utilizing cellular, radio, and computer based communication methods and updating individual maps accordingly. A drawback of these practices has been interoperability of these devices as well as accurate reporting and documentation among different entities of the effort. Recent advances in technology have led to the utilization of collaborative maps for maintaining a COP amongst command centers. Despite the advantages this technique offers, it does not address the difficulties surrounding receiving reports from field entities as well as ensuring these entities also have good situational awareness. The goal of this research is to explore smartphone capabilities in conjunction with cloud computing to determine how they can extend the benefits of collaborative maps to mobile users while simultaneously ensuring command centers are receiving accurate, up-to-date reports from the field.http://archive.org/details/utilizingandroid109456763Lieutenant, United States Nav

    Proceedings of the ANDROID Doctoral School

    Get PDF
    The Doctoral School initiative which was set up by the ANDROID network is a core element of the overall project that aims to strengthen the link between research and teaching in the area of disaster resilience. The mixed teaching space that we have developed as part of this ongoing project has attempted to encourage and promote the work of doctoral students in this field. The ANDROID disaster resilience network doctoral school consists of two programmes: 1. Online Doctoral School (ODS) and 2. Residential Doctoral School (RDS) The interlinked programmes work together to deliver on a varied number of teaching and research driven objectives. The online doctoral school which was conducted in Spring 2013 provided an innovative platform to transfer and develop the knowledge base of doctoral candidates. This was achieved through the conduct of a series of domain expert presentations along with thematic sessions aimed at engaging the doctoral researchers in knowledge discovery through detailed discussion. The online doctoral school will be rolled out again in Spring 2014

    Universal Mobile Service Execution Framework for Device-To-Device Collaborations

    Get PDF
    There are high demands of effective and high-performance of collaborations between mobile devices in the places where traditional Internet connections are unavailable, unreliable, or significantly overburdened, such as on a battlefield, disaster zones, isolated rural areas, or crowded public venues. To enable collaboration among the devices in opportunistic networks, code offloading and Remote Method Invocation are the two major mechanisms to ensure code portions of applications are successfully transmitted to and executed on the remote platforms. Although these domains are highly enjoyed in research for a decade, the limitations of multi-device connectivity, system error handling or cross platform compatibility prohibit these technologies from being broadly applied in the mobile industry. To address the above problems, we designed and developed UMSEF - an Universal Mobile Service Execution Framework, which is an innovative and radical approach for mobile computing in opportunistic networks. Our solution is built as a component-based mobile middleware architecture that is flexible and adaptive with multiple network topologies, tolerant for network errors and compatible for multiple platforms. We provided an effective algorithm to estimate the resource availability of a device for higher performance and energy consumption and a novel platform for mobile remote method invocation based on declarative annotations over multi-group device networks. The experiments in reality exposes our approach not only achieve the better performance and energy consumption, but can be extended to large-scaled ubiquitous or IoT systems

    On-the-Fly Establishment of Multi-hop D2D Communication based on Android Smartphones and Embedded Platforms: Implementation and Real-Life Experiments

    Get PDF
    Masteroppgave informasjons- og kommunikasjonsteknologi - Universitetet i Agder, 2015(Konfidensiell til/confidential until 01.07.2020

    Secure Communication in Disaster Scenarios

    Get PDF
    WĂ€hrend Naturkatastrophen oder terroristischer AnschlĂ€ge ist die bestehende Kommunikationsinfrastruktur hĂ€ufig ĂŒberlastet oder fĂ€llt komplett aus. In diesen Situationen können mobile GerĂ€te mithilfe von drahtloser ad-hoc- und unterbrechungstoleranter Vernetzung miteinander verbunden werden, um ein Notfall-Kommunikationssystem fĂŒr Zivilisten und Rettungsdienste einzurichten. Falls verfĂŒgbar, kann eine Verbindung zu Cloud-Diensten im Internet eine wertvolle Hilfe im Krisen- und Katastrophenmanagement sein. Solche Kommunikationssysteme bergen jedoch ernsthafte Sicherheitsrisiken, da Angreifer versuchen könnten, vertrauliche Daten zu stehlen, gefĂ€lschte Benachrichtigungen von Notfalldiensten einzuspeisen oder Denial-of-Service (DoS) Angriffe durchzufĂŒhren. Diese Dissertation schlĂ€gt neue AnsĂ€tze zur Kommunikation in Notfallnetzen von mobilen GerĂ€ten vor, die von der Kommunikation zwischen MobilfunkgerĂ€ten bis zu Cloud-Diensten auf Servern im Internet reichen. Durch die Nutzung dieser AnsĂ€tze werden die Sicherheit der GerĂ€te-zu-GerĂ€te-Kommunikation, die Sicherheit von Notfall-Apps auf mobilen GerĂ€ten und die Sicherheit von Server-Systemen fĂŒr Cloud-Dienste verbessert

    Mobile computing and sensor Web services for coastal buoys

    Get PDF
    Mobile device technology with the influence of the Internet is creating a lot of Webbased services so that people can have easy and 24-hour access to the services. Recently, the Google’s Android has revolutionized applications development for the mobile platform. As there is an increasing number of companies exposing their services as Web services, enabling flexible mobile access to distributed Web resources is a relevant challenge. However, the current Web is a collection of human readable pages that are unintelligible to computer programs. Semantic Web and Web services have the potential of overcoming this limitation. For this, a standard ontology called Ontology Web Language for Services (OWL-S) is employed. The vision is to automatically discover services like Sensor Web services from mobile. In this thesis, a mobile framework is developed for the automatic discovery of services. The application is implemented for the Coastal Sensor Web and the Semantic Web service

    Cloud-assisted body area networks: state-of-the-art and future challenges

    Get PDF
    Body area networks (BANs) are emerging as enabling technology for many human-centered application domains such as health-care, sport, fitness, wellness, ergonomics, emergency, safety, security, and sociality. A BAN, which basically consists of wireless wearable sensor nodes usually coordinated by a static or mobile device, is mainly exploited to monitor single assisted livings. Data generated by a BAN can be processed in real-time by the BAN coordinator and/or transmitted to a server-side for online/offline processing and long-term storing. A network of BANs worn by a community of people produces large amount of contextual data that require a scalable and efficient approach for elaboration and storage. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of body sensor data streams. In this paper, we motivate the introduction of Cloud-assisted BANs along with the main challenges that need to be addressed for their development and management. The current state-of-the-art is overviewed and framed according to the main requirements for effective Cloud-assisted BAN architectures. Finally, relevant open research issues in terms of efficiency, scalability, security, interoperability, prototyping, dynamic deployment and management, are discussed

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Command and Control Systems for Search and Rescue Robots

    Get PDF
    The novel application of unmanned systems in the domain of humanitarian Search and Rescue (SAR) operations has created a need to develop specific multi-Robot Command and Control (RC2) systems. This societal application of robotics requires human-robot interfaces for controlling a large fleet of heterogeneous robots deployed in multiple domains of operation (ground, aerial and marine). This chapter provides an overview of the Command, Control and Intelligence (C2I) system developed within the scope of Integrated Components for Assisted Rescue and Unmanned Search operations (ICARUS). The life cycle of the system begins with a description of use cases and the deployment scenarios in collaboration with SAR teams as end-users. This is followed by an illustration of the system design and architecture, core technologies used in implementing the C2I, iterative integration phases with field deployments for evaluating and improving the system. The main subcomponents consist of a central Mission Planning and Coordination System (MPCS), field Robot Command and Control (RC2) subsystems with a portable force-feedback exoskeleton interface for robot arm tele-manipulation and field mobile devices. The distribution of these C2I subsystems with their communication links for unmanned SAR operations is described in detail. Field demonstrations of the C2I system with SAR personnel assisted by unmanned systems provide an outlook for implementing such systems into mainstream SAR operations in the future
    • 

    corecore