1,585 research outputs found

    A Generalization of Otsu's Method and Minimum Error Thresholding

    Full text link
    We present Generalized Histogram Thresholding (GHT), a simple, fast, and effective technique for histogram-based image thresholding. GHT works by performing approximate maximum a posteriori estimation of a mixture of Gaussians with appropriate priors. We demonstrate that GHT subsumes three classic thresholding techniques as special cases: Otsu's method, Minimum Error Thresholding (MET), and weighted percentile thresholding. GHT thereby enables the continuous interpolation between those three algorithms, which allows thresholding accuracy to be improved significantly. GHT also provides a clarifying interpretation of the common practice of coarsening a histogram's bin width during thresholding. We show that GHT outperforms or matches the performance of all algorithms on a recent challenge for handwritten document image binarization (including deep neural networks trained to produce per-pixel binarizations), and can be implemented in a dozen lines of code or as a trivial modification to Otsu's method or MET.Comment: ECCV 202

    Reparameterizing the Birkhoff Polytope for Variational Permutation Inference

    Full text link
    Many matching, tracking, sorting, and ranking problems require probabilistic reasoning about possible permutations, a set that grows factorially with dimension. Combinatorial optimization algorithms may enable efficient point estimation, but fully Bayesian inference poses a severe challenge in this high-dimensional, discrete space. To surmount this challenge, we start with the usual step of relaxing a discrete set (here, of permutation matrices) to its convex hull, which here is the Birkhoff polytope: the set of all doubly-stochastic matrices. We then introduce two novel transformations: first, an invertible and differentiable stick-breaking procedure that maps unconstrained space to the Birkhoff polytope; second, a map that rounds points toward the vertices of the polytope. Both transformations include a temperature parameter that, in the limit, concentrates the densities on permutation matrices. We then exploit these transformations and reparameterization gradients to introduce variational inference over permutation matrices, and we demonstrate its utility in a series of experiments

    Training Dynamic Exponential Family Models with Causal and Lateral Dependencies for Generalized Neuromorphic Computing

    Full text link
    Neuromorphic hardware platforms, such as Intel's Loihi chip, support the implementation of Spiking Neural Networks (SNNs) as an energy-efficient alternative to Artificial Neural Networks (ANNs). SNNs are networks of neurons with internal analogue dynamics that communicate by means of binary time series. In this work, a probabilistic model is introduced for a generalized set-up in which the synaptic time series can take values in an arbitrary alphabet and are characterized by both causal and instantaneous statistical dependencies. The model, which can be considered as an extension of exponential family harmoniums to time series, is introduced by means of a hybrid directed-undirected graphical representation. Furthermore, distributed learning rules are derived for Maximum Likelihood and Bayesian criteria under the assumption of fully observed time series in the training set.Comment: Published in IEEE ICASSP 2019. Author's Accepted Manuscrip

    A Low Density Lattice Decoder via Non-Parametric Belief Propagation

    Full text link
    The recent work of Sommer, Feder and Shalvi presented a new family of codes called low density lattice codes (LDLC) that can be decoded efficiently and approach the capacity of the AWGN channel. A linear time iterative decoding scheme which is based on a message-passing formulation on a factor graph is given. In the current work we report our theoretical findings regarding the relation between the LDLC decoder and belief propagation. We show that the LDLC decoder is an instance of non-parametric belief propagation and further connect it to the Gaussian belief propagation algorithm. Our new results enable borrowing knowledge from the non-parametric and Gaussian belief propagation domains into the LDLC domain. Specifically, we give more general convergence conditions for convergence of the LDLC decoder (under the same assumptions of the original LDLC convergence analysis). We discuss how to extend the LDLC decoder from Latin square to full rank, non-square matrices. We propose an efficient construction of sparse generator matrix and its matching decoder. We report preliminary experimental results which show our decoder has comparable symbol to error rate compared to the original LDLC decoder.%Comment: Submitted for publicatio
    corecore