4,182 research outputs found

    Southern Adventist University Undergraduate Catalog 2023-2024

    Get PDF
    Southern Adventist University\u27s undergraduate catalog for the academic year 2023-2024.https://knowledge.e.southern.edu/undergrad_catalog/1123/thumbnail.jp

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Sizing the Actuators for a Dragon Fly Prototype

    Get PDF
    In order to improve the design of the actuators of a Dragon Fly prototype, we study the loads applied to the actuators in operation. Both external and inertial forces are taken into account, as well as internal loads, for the purposes of evaluating the influence of the compliance of the arms on that of the "end-effector". We have shown many inadequacies of the arms regarding the stiffness needed to meet the initial design requirements. In order to reduce these inadequacies, a careful structural analysis of the stiffness of the actuators is carried out with a FEM technique, aimed at identifying the design methodology necessary to identify the mechanical elements of the arms to be stiffened. As an example, the design of the actuators is presented, with the aim of proposing an indirect calibration strategy. We have shown that the performances of the Dragon Fly prototype can be improved by developing and including in the control system a suitable module to compensate the incoming errors. By implementing our model in some practical simulations, with a maximum load on the actuators, and internal stresses, we have shown the efficiency of our model by collected experimental data. A FEM analysis is carried out on each actuator to identify the critical elements to be stiffened, and a calibration strategy is used to evaluate and compensate the expected kinematic errors due to gravity and external loads. The obtained results are used to assess the size of the actuators. The sensitivity analysis on the effects of global compliance within the structure enables us to identify and stiffen the critical elements (typically the extremities of the actuators). The worst loading conditions have been evaluated, by considering the internal loads in the critical points of the machine structure results in enabling us the sizing of the actuators. So that the Dragon fly prototype project has been set up, and the first optimal design of the arms has been performed by means of FEM analysis

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Control of unstable systems using a 7 DoF robotic manipulator

    Get PDF
    Robotic manipulators are widely used in industrial applications, and their rigidity and flexibility are very important factors during their deployment. However, their usage is not limited to repetitive point-to-point tasks and can be used for more real-time control of various processes. This paper uses a 7-degrees-of-freedom manipulator to control an unstable system (Ball and Plate) as a proof of concept. The Ball and Plate system is widely used for testing algorithms designed for unstable systems, and many recent works have dealt with robotic manipulators as a control motion system. Robots are not usually used to control unstable systems, but bipedal robots are an exception. This paper aims to design a controller capable of stabilizing an unstable system with solid robustness while keeping actuator action values as low as possible because these robots will be indented to work for a prolonged time. An algorithm for an LQ polynomial controller is described and designed, and the whole setup is tested for ball stabilization in the center. The results show that the designed controller stabilizes the ball even with large external and internal disturbances while keeping the controller effort as low as possible

    Category Theory for Autonomous Robots: The Marathon 2 Use Case

    Full text link
    Model-based systems engineering (MBSE) is a methodology that exploits system representation during the entire system life-cycle. The use of formal models has gained momentum in robotics engineering over the past few years. Models play a crucial role in robot design; they serve as the basis for achieving holistic properties, such as functional reliability or adaptive resilience, and facilitate the automated production of modules. We propose the use of formal conceptualizations beyond the engineering phase, providing accurate models that can be leveraged at runtime. This paper explores the use of Category Theory, a mathematical framework for describing abstractions, as a formal language to produce such robot models. To showcase its practical application, we present a concrete example based on the Marathon 2 experiment. Here, we illustrate the potential of formalizing systems -- including their recovery mechanisms -- which allows engineers to design more trustworthy autonomous robots. This, in turn, enhances their dependability and performance

    Characterisation and State Estimation of Magnetic Soft Continuum Robots

    Get PDF
    Minimally invasive surgery has become more popular as it leads to less bleeding, scarring, pain, and shorter recovery time. However, this has come with counter-intuitive devices and steep surgeon learning curves. Magnetically actuated Soft Continuum Robots (SCR) have the potential to replace these devices, providing high dexterity together with the ability to conform to complex environments and safe human interactions without the cognitive burden for the clinician. Despite considerable progress in the past decade in their development, several challenges still plague SCR hindering their full realisation. This thesis aims at improving magnetically actuated SCR by addressing some of these challenges, such as material characterisation and modelling, and sensing feedback and localisation. Material characterisation for SCR is essential for understanding their behaviour and designing effective modelling and simulation strategies. In this work, the material properties of commonly employed materials in magnetically actuated SCR, such as elastic modulus, hyper-elastic model parameters, and magnetic moment were determined. Additionally, the effect these parameters have on modelling and simulating these devices was investigated. Due to the nature of magnetic actuation, localisation is of utmost importance to ensure accurate control and delivery of functionality. As such, two localisation strategies for magnetically actuated SCR were developed, one capable of estimating the full 6 degrees of freedom (DOFs) pose without any prior pose information, and another capable of accurately tracking the full 6-DOFs in real-time with positional errors lower than 4~mm. These will contribute to the development of autonomous navigation and closed-loop control of magnetically actuated SCR

    Probabilistic Inference for Model Based Control

    Get PDF
    Robotic systems are essential for enhancing productivity, automation, and performing hazardous tasks. Addressing the unpredictability of physical systems, this thesis advances robotic planning and control under uncertainty, introducing learning-based methods for managing uncertain parameters and adapting to changing environments in real-time. Our first contribution is a framework using Bayesian statistics for likelihood-free inference of model parameters. This allows employing complex simulators for designing efficient, robust controllers. The method, integrating the unscented transform with a variant of information theoretical model predictive control, shows better performance in trajectory evaluation compared to Monte Carlo sampling, easing the computational load in various control and robotics tasks. Next, we reframe robotic planning and control as a Bayesian inference problem, focusing on the posterior distribution of actions and model parameters. An implicit variational inference algorithm, performing Stein Variational Gradient Descent, estimates distributions over model parameters and control inputs in real-time. This Bayesian approach effectively handles complex multi-modal posterior distributions, vital for dynamic and realistic robot navigation. Finally, we tackle diversity in high-dimensional spaces. Our approach mitigates underestimation of uncertainty in posterior distributions, which leads to locally optimal solutions. Using the theory of rough paths, we develop an algorithm for parallel trajectory optimisation, enhancing solution diversity and avoiding mode collapse. This method extends our variational inference approach for trajectory estimation, employing diversity-enhancing kernels and leveraging path signature representation of trajectories. Empirical tests, ranging from 2-D navigation to robotic manipulators in cluttered environments, affirm our method's efficiency, outperforming existing alternatives

    Occlusion-Robust Autonomous Robotic Manipulation of Human Soft Tissues With 3D Surface Feedback

    Get PDF
    Robotic manipulation of 3D soft objects remains challenging in the industrial and medical fields. Various methods based on mechanical modelling, data-driven approaches or explicit feature tracking have been proposed. A unifying disadvantage of these methods is the high computational cost of simultaneous imaging processing, identification of mechanical properties, and motion planning, leading to a need for less computationally intensive methods. We propose a method for autonomous robotic manipulation with 3D surface feedback to solve these issues. First, we produce a deformation model of the manipulated object, which estimates the robots' movements by monitoring the displacement of surface points surrounding the manipulators. Then, we develop a 6-degree-of-freedom velocity controller to manipulate the grasped object to achieve a desired shape. We validate our approach through comparative simulations with existing methods and experiments using phantom and cadaveric soft tissues with the da Vinci Research Kit. The results demonstrate the robustness of the technique to occlusions and various materials. Compared to state-of-the-art linear and data-driven methods, our approach is more precise by 46.5% and 15.9% and saves 55.2% and 25.7% manipulation time, respectively
    corecore