64,574 research outputs found

    Enhancing learning through cooperative learning: UTM experience

    Get PDF
    Lecture-based classes are the predominant teaching method in all levels of education. This teaching style, undoubtedly is able to deliver knowledge to students and produce graduates. However, this teaching technique is usually unable to invoke higher level of cognitive skills. With an ever-growing volume of knowledge that must be covered in engineering education, an alternative technique must be used to enhance learning. Co-operative learning is a proven teaching technique that is able to enhance students’ learning through active learning. This technique has been widely accepted in engineering education in the United States, Europe, United Kingdom and Australia. In UTM, lecturers from different faculties of engineering implement cooperative learning in their classes. The main aim is to induce better retention, in-depth understanding and mastery of knowledge among students. This paper shows how cooperative learning successfully enhance students' learning by looking at the performance of their grades in different engineering classes

    University of Nottingham

    Get PDF

    A framework for design engineering education in a global context

    Get PDF
    This paper presents a framework for teaching design engineering in a global context using innovative technologies to enable distributed teams to work together effectively across international and cultural boundaries. The DIDET Framework represents the findings of a 5-year project conducted by the University of Strathclyde, Stanford University and Olin College which enhanced student learning opportunities by enabling them to partake in global, team based design engineering projects, directly experiencing different cultural contexts and accessing a variety of digital information sources via a range of innovative technology. The use of innovative technology enabled the formalization of design knowledge within international student teams as did the methods that were developed for students to store, share and reuse information. Coaching methods were used by teaching staff to support distributed teams and evaluation work on relevant classes was carried out regularly to allow ongoing improvement of learning and teaching and show improvements in student learning. Major findings of the 5 year project include the requirement to overcome technological, pedagogical and cultural issues for successful eLearning implementations. The DIDET Framework encapsulates all the conclusions relating to design engineering in a global context. Each of the principles for effective distributed design learning is shown along with relevant findings and suggested metrics. The findings detailed in the paper were reached through a series of interventions in design engineering education at the collaborating institutions. Evaluation was carried out on an ongoing basis and fed back into project development, both on the pedagogical and the technological approaches

    Load flow studies on stand alone microgrid system in Ranau, Sabah

    Get PDF
    This paper presents the power flow or load flow analysis of Ranau microgrid, a standalone microgrid in the district of Ranau,West Coast Division of Sabah. Power flow for IEEE 9 bus also performed and analyzed. Power flow is define as an important tool involving numerical analysis applied to power system. Power flow uses simplified notation such as one line diagram and per-unit system focusing on voltages, voltage angles, real power and reactive power. To achieved that purpose, this research is done by analyzing the power flow analysis and calculation of all the elements in the microgrid such as generators, buses, loads, transformers, transmission lines using the Power Factory DIGSilent 14 software to calculate the power flow. After the analysis and calculations, the results were analysed and compared

    Teaching and learning in virtual worlds: is it worth the effort?

    Get PDF
    Educators have been quick to spot the enormous potential afforded by virtual worlds for situated and authentic learning, practising tasks with potentially serious consequences in the real world and for bringing geographically dispersed faculty and students together in the same space (Gee, 2007; Johnson and Levine, 2008). Though this potential has largely been realised, it generally isn’t without cost in terms of lack of institutional buy-in, steep learning curves for all participants, and lack of a sound theoretical framework to support learning activities (Campbell, 2009; Cheal, 2007; Kluge & Riley, 2008). This symposium will explore the affordances and issues associated with teaching and learning in virtual worlds, all the time considering the question: is it worth the effort

    Transforming pre-service teacher curriculum: observation through a TPACK lens

    Get PDF
    This paper will discuss an international online collaborative learning experience through the lens of the Technological Pedagogical Content Knowledge (TPACK) framework. The teacher knowledge required to effectively provide transformative learning experiences for 21st century learners in a digital world is complex, situated and changing. The discussion looks beyond the opportunity for knowledge development of content, pedagogy and technology as components of TPACK towards the interaction between those three components. Implications for practice are also discussed. In today’s technology infused classrooms it is within the realms of teacher educators, practising teaching and pre-service teachers explore and address effective practices using technology to enhance learning
    corecore