11,095 research outputs found

    Ten virtues of structured graphs

    Get PDF
    This paper extends the invited talk by the first author about the virtues of structured graphs. The motivation behind the talk and this paper relies on our experience on the development of ADR, a formal approach for the design of styleconformant, reconfigurable software systems. ADR is based on hierarchical graphs with interfaces and it has been conceived in the attempt of reconciling software architectures and process calculi by means of graphical methods. We have tried to write an ADR agnostic paper where we raise some drawbacks of flat, unstructured graphs for the design and analysis of software systems and we argue that hierarchical, structured graphs can alleviate such drawbacks

    Left Recursion in Parsing Expression Grammars

    Full text link
    Parsing Expression Grammars (PEGs) are a formalism that can describe all deterministic context-free languages through a set of rules that specify a top-down parser for some language. PEGs are easy to use, and there are efficient implementations of PEG libraries in several programming languages. A frequently missed feature of PEGs is left recursion, which is commonly used in Context-Free Grammars (CFGs) to encode left-associative operations. We present a simple conservative extension to the semantics of PEGs that gives useful meaning to direct and indirect left-recursive rules, and show that our extensions make it easy to express left-recursive idioms from CFGs in PEGs, with similar results. We prove the conservativeness of these extensions, and also prove that they work with any left-recursive PEG. PEGs can also be compiled to programs in a low-level parsing machine. We present an extension to the semantics of the operations of this parsing machine that let it interpret left-recursive PEGs, and prove that this extension is correct with regards to our semantics for left-recursive PEGs.Comment: Extended version of the paper "Left Recursion in Parsing Expression Grammars", that was published on 2012 Brazilian Symposium on Programming Language

    Graph Algorithm Animation with Grrr

    Get PDF
    We discuss geometric positioning, highlighting of visited nodes and user defined highlighting that form the algorithm animation facilities in the Grrr graph rewriting programming language. The main purpose of animation was initially for the debugging and profiling of Grrr code, but recently it has been extended for the purpose of teaching algorithms to undergraduate students. The animation is restricted to graph based algorithms such as graph drawing, list manipulation or more traditional graph theory. The visual nature of the Grrr system allows much animation to be gained for free, with no extra user effort beyond the coding of the algorithm, but we also discuss user defined animations, where custom algorithm visualisations can be explicitly defined for teaching and demonstration purposes

    Repotting the Geraniums: On Nested Graph Transformation Rules

    Get PDF
    We propose a scheme for rule amalgamation based on nested graph predicates. Essentially, we extend all the graphs in such a predicate with right hand sides. Whenever such an enriched nested predicate matches (i.e., is satisfied by) a given host graph, this results in many individual match morphisms, and thus many “small” rule applications. The total effect is described by the amalgamated rule. This makes for a smooth, uniform and very powerful amalgamation scheme, which we demonstrate on a number of examples. Among the examples is the following, which we believe to be inexpressible in very few other parallel rule formalism proposed in the literature: repot all flowering geraniums whose pots have cracked.\u

    CItyMaker:

    Get PDF
    Due to its complexity, the evolution of cities is something that is difficult to predict and planning new developments for cities is therefore a difficult task. This complexity can be identified on two levels: on a micro level, it emerges from the multiple relations between the many components and actors in cities, whereas on a macro level it stems from the geographical, social and economic relations between cities. However, many of these relations can be measured. The design of plans for cities can only be improved if designers are able to address measurements of some of the relationships between the components of cities during the design process. These measurements are called urban indicators. By calculating such measurements, designers can grasp the meaning of the changes being proposed, not just as simple alternative layouts, but also in terms of the changes in indicators adding a qualitative perception. This thesis presents a method and a set of tools to generate alternative solutions for an urban context. The method proposes the use of a combined set of design patterns encoding typical design moves used by urban designers. The combination of patterns generates different layouts which can be adjusted by manipulating several parameters in relation to updated urban indicators. The patterns were developed from observation of typical urban design procedures, first encoded as discursive grammars and later translated into parametric design patterns. The CItyMaker method and tools allows the designer to compose a design solution from a set of programmatic premises and fine-tune it by pulling parameters whilst checking the changes in urban indicators. These tools improve the designer’s awareness of the consequences of their design moves

    CItyMaker

    Get PDF
    Due to its complexity, the evolution of cities is something that is difficult to predict and planning new developments for cities is therefore a difficult task. This complexity can be identified on two levels: on a micro level, it emerges from the multiple relations between the many components and actors in cities, whereas on a macro level it stems from the geographical, social and economic relations between cities. However, many of these relations can be measured. The design of plans for cities can only be improved if designers are able to address measurements of some of the relationships between the components of cities during the design process. These measurements are called urban indicators. By calculating such measurements, designers can grasp the meaning of the changes being proposed, not just as simple alternative layouts, but also in terms of the changes in indicators adding a qualitative perception. This thesis presents a method and a set of tools to generate alternative solutions for an urban context. The method proposes the use of a combined set of design patterns encoding typical design moves used by urban designers. The combination of patterns generates different layouts which can be adjusted by manipulating several parameters in relation to updated urban indicators. The patterns were developed from observation of typical urban design procedures, first encoded as discursive grammars and later translated into parametric design patterns. The CItyMaker method and tools allows the designer to compose a design solution from a set of programmatic premises and fine-tune it by pulling parameters whilst checking the changes in urban indicators. These tools improve the designer’s awareness of the consequences of their design moves

    AI EDAM special issue: advances in implemented shape grammars: solutions and applications

    Get PDF
    This paper introduces the special issue “Advances in Implemented Shape Grammars: Solutions and Applications” and frames the topic of computer implementations of shape grammars, both with a theoretical and an applied focus. This special issue focuses on the current state of the art regarding computer implementations of shape grammars and brings a discussion about how those systems can evolve in the coming years so that they can be used in real life design scenarios. This paper presents a brief state of the art of shape grammars implementation and an overview of the papers included in the current special issue categorized under technical design, interpreters and interface design, and uses cases. The paper ends with a comprehensive outlook into the future of shape grammars implementations.info:eu-repo/semantics/acceptedVersio
    • …
    corecore