169 research outputs found

    On reliability and performance analyses of IEC 61850 for digital SAS

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    Communication in microgrids and virtual power plants

    Get PDF
    One of the cornerstones of the steady operation of microgrids and virtual power plants as building blocks for smart grid is the communication system, which is the main objective for evaluation and research in this thesis. The given project investigates the most widespread communication protocols along with IEC 61850 standard for substations automation applied in smart grids. Based on the presented analysis for communication technologies and protocols the appropriate communication solution for the laboratory microgrid at UiT – The Arctic University of Norway (Campus Narvik) is suggested and implemente

    Implementation of IEC 61850 in Solar Applications

    Get PDF
    IEC 61850 has become one of the core technologies in the substation automation due its high-speed reliable operation Ethernet-based communication with a high security. Its reliability and performance makes a significant contribution to a fail-safe substation operation. IEC 61850 also allows both vertical and horizontal communications in the substation automation. Main characteristic of IEC 61850 is the use of GOOSE messages. All communication services run parallel via one LAN connection and the same GOOSE message can be broadcasted to several IEDs in once. This results in less wiring and faster data exchange between applications. Moreover, one of the core features of IEC 61850 is the interoperability between IEDs from different vendors. The separation of communication and data model allows to reliably retaining engineering data for a long time even if when upgrading or changing the system. IEC publishes updated documentations every while and add new parts to the standard due to the rabidly increase of IEC 61850 applications demand. As the market of solar applications has been increasing last few years, hence, the needs of new technologies to be implemented in solar applications is increasing as well. This thesis beside several other current researches nowadays is investigating the implementation of IEC 61850 in solar applications. The thesis outlines the current needs of solar applications by collecting statistical data using two surveys then concludes the implementation requirement. In the end of the research, IEC 61850 Data sets and current used parameters by Vacon were compared, and simulation example of photovoltaic array is given to conclude the benefits of using IEC 61850 in solar systems.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Current challenges and future trends in the field of communication architectures for microgrids

    Full text link
    [EN] The concept of microgrid has emerged as a feasible answer to cope with the increasing number of distributed renewable energy sources which are being introduced into the electrical grid. The microgrid communication network should guarantee a complete and bidirectional connectivity among the microgrid resources, a high reliability and a feasible interoperability. This is in a contrast to the current electrical grid structure which is characterized by the lack of connectivity, being a centralized-unidirectional system. In this paper a review of the microgrids information and communication technologies (ICT) is shown. In addition, a guideline for the transition from the current communication systems to the future generation of microgrid communications is provided. This paper contains a systematic review of the most suitable communication network topologies, technologies and protocols for smart microgrids. It is concluded that a new generation of peer-to-peer communication systems is required towards a dynamic smart microgrid. Potential future research about communications of the next microgrid generation is also identified.This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2. This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant BES-2013-064539.Marzal-Romeu, S.; Salas-Puente, RA.; González Medina, R.; Garcerá, G.; Figueres Amorós, E. (2018). Current challenges and future trends in the field of communication architectures for microgrids. Renewable and Sustainable Energy Reviews. 82(2):3610-3622. https://doi.org/10.1016/j.rser.2017.10.101S3610362282

    Substation Communication Architecture to Realize the Future Smart Grid

    Get PDF
    Substation and its communication architecture play an important role in maintaining high reliability, and availability of the power supply. Due to the proliferation of multi-vendor IEDs (Intelligent Electronic Devices) and communication technologies in substation, there seems to be an immediate need to adopt a standard approach for meeting the critical communication demands of Substation Automation System (SAS) and also to be future ready to tackle demand growth and changing scenario due to restructuring and deregulation. This paper presents possible exploitation of the technical features of IEC 61850, the standard for Communication Networks and Systems in Substation, to make the substation communication architecture future ready to accommodate the applications and goals of smart grid. Keywords: Substation Automation, Interoperability, IEC61850, Smart Grid, Distribution Automation

    Automation, Protection and Control of Substation Based on IEC 61850

    Get PDF
    Reliability of power system protection system has been a key issue in the substation operation due to the use of multi-vendor equipment of proprietary features, environmental issues, and complex fault diagnosis. Failure to address these issues could have a significant effect on the performance of the entire electricity grid. With the introduction of IEC 61850 standard, substation automation system (SAS) has significantly altered the scenario in utilities and industries as indicated in this thesis

    A Communications Testbed for Testing Power Electronic Agent Systems

    Get PDF
    As power electronic system (PES) continue to incorporate complex intra-system communication, understanding and characterizing this communication has become a complex task. Knowing how a system’s communication will behave is vital to ensuring proper operation of these systems. This thesis proposes and outlines a communication testbed that streamlines the development and testing of the communications between the components of PES, and further presents the characterization of communication protocol utilized in these multi-agent PESs. These communication protocols include MQTT, Modbus, or User Datagram Protocol (UDP). Understanding the different behavior of these protocols presents is paramount for the design of PESs

    Software Evolution for Industrial Automation Systems. Literature Overview

    Get PDF
    • …
    corecore