17,086 research outputs found

    An Evaluation of the X10 Programming Language

    Get PDF
    As predicted by Moore\u27s law, the number of transistors on a chip has been doubled approximately every two years. As miraculous as it sounds, for many years, the extra transistors have massively benefited the whole computer industry, by using the extra transistors to increase CPU clock speed, thus boosting performance. However, due to heat wall and power constraints, the clock speed cannot be increased limitlessly. Hardware vendors now have to take another path other than increasing clock speed, which is to utilize the transistors to increase the number of processor cores on each chip. This hardware structural change presents inevitable challenges to software structure, where single thread targeted software will not benefit from newer chips or may even suffer from lower clock speed. The two fundamental challenges are: 1. How to deal with the stagnation of single core clock speed and cache memory. 2. How to utilize the additional power generated from more cores on a chip. Most software programming languages nowadays have distributed computing support, such as C and Java [1]. Meanwhile, some new programming languages were invented from scratch just to take advantage of the more distributed hardware structures. The X10 Programming Language is one of them. The goal of this project is to evaluate X10 in terms of performance, programmability and tool support

    Emulating and evaluating hybrid memory for managed languages on NUMA hardware

    Get PDF
    Non-volatile memory (NVM) has the potential to become a mainstream memory technology and challenge DRAM. Researchers evaluating the speed, endurance, and abstractions of hybrid memories with DRAM and NVM typically use simulation, making it easy to evaluate the impact of different hardware technologies and parameters. Simulation is, however, extremely slow, limiting the applications and datasets in the evaluation. Simulation also precludes critical workloads, especially those written in managed languages such as Java and C#. Good methodology embraces a variety of techniques for evaluating new ideas, expanding the experimental scope, and uncovering new insights. This paper introduces a platform to emulate hybrid memory for managed languages using commodity NUMA servers. Emulation complements simulation but offers richer software experimentation. We use a thread-local socket to emulate DRAM and a remote socket to emulate NVM. We use standard C library routines to allocate heap memory on the DRAM and NVM sockets for use with explicit memory management or garbage collection. We evaluate the emulator using various configurations of write-rationing garbage collectors that improve NVM lifetimes by limiting writes to NVM, using 15 applications and various datasets and workload configurations. We show emulation and simulation confirm each other's trends in terms of writes to NVM for different software configurations, increasing our confidence in predicting future system effects. Emulation brings novel insights, such as the non-linear effects of multi-programmed workloads on NVM writes, and that Java applications write significantly more than their C++ equivalents. We make our software infrastructure publicly available to advance the evaluation of novel memory management schemes on hybrid memories

    PPF - A Parallel Particle Filtering Library

    Full text link
    We present the parallel particle filtering (PPF) software library, which enables hybrid shared-memory/distributed-memory parallelization of particle filtering (PF) algorithms combining the Message Passing Interface (MPI) with multithreading for multi-level parallelism. The library is implemented in Java and relies on OpenMPI's Java bindings for inter-process communication. It includes dynamic load balancing, multi-thread balancing, and several algorithmic improvements for PF, such as input-space domain decomposition. The PPF library hides the difficulties of efficient parallel programming of PF algorithms and provides application developers with the necessary tools for parallel implementation of PF methods. We demonstrate the capabilities of the PPF library using two distributed PF algorithms in two scenarios with different numbers of particles. The PPF library runs a 38 million particle problem, corresponding to more than 1.86 GB of particle data, on 192 cores with 67% parallel efficiency. To the best of our knowledge, the PPF library is the first open-source software that offers a parallel framework for PF applications.Comment: 8 pages, 8 figures; will appear in the proceedings of the IET Data Fusion & Target Tracking Conference 201
    • …
    corecore