125 research outputs found

    Multi-resolution mapping and planning for UAV navigation in attitude constrained environments

    Get PDF
    In this thesis we aim to bridge the gap between high quality map reconstruction and Unmanned Aerial Vehicles (UAVs) SE(3) motion planning in challenging environments with narrow openings, such as disaster areas, which requires attitude to be considered. We propose an efficient system that leverages the concept of adaptive-resolution volumetric mapping, which naturally integrates with the hierarchical decomposition of space in an octree data structure. Instead of a Truncated Signed Distance Function (TSDF), we adopt mapping of occupancy probabilities in log-odds representation, which allows representation of both surfaces, as well as the entire free, i.e.\ observed space, as opposed to unobserved space. We introduce a method for choosing resolution -on the fly- in real-time by means of a multi-scale max-min pooling of the input depth image. The notion of explicit free space mapping paired with the spatial hierarchy in the data structure, as well as map resolution, allows for collision queries, as needed for robot motion planning, at unprecedented speed. Our mapping strategy supports pinhole cameras as well as spherical sensor models. Additionally, we introduce a first-of-a-kind global minimum cost path search method based on A* that considers attitude along the path. State-of-the-art methods incorporate attitude only in the refinement stage. To make the problem tractable, our method exploits an adaptive and coarse-to-fine approach using global and local A* runs, plus an efficient method to introduce the UAV attitude in the process. We integrate our method with an SE(3) trajectory optimisation method based on a safe-flight-corridor, yielding a complete path planning pipeline. We quantitatively evaluate our mapping strategy in terms of mapping accuracy, memory, runtime performance, and planning performance showing improvements over the state-of-the-art, particularly in cases requiring high resolution maps. Furthermore, extensive evaluation is undertaken using the AirSim flight simulator under closed loop control in a set of randomised maps, allowing us to quantitatively assess our path initialisation method. We show that it achieves significantly higher success rates than the baselines, at a reduced computational burden.Open Acces

    PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning

    Full text link
    We present PRM-RL, a hierarchical method for long-range navigation task completion that combines sampling based path planning with reinforcement learning (RL). The RL agents learn short-range, point-to-point navigation policies that capture robot dynamics and task constraints without knowledge of the large-scale topology. Next, the sampling-based planners provide roadmaps which connect robot configurations that can be successfully navigated by the RL agent. The same RL agents are used to control the robot under the direction of the planning, enabling long-range navigation. We use the Probabilistic Roadmaps (PRMs) for the sampling-based planner. The RL agents are constructed using feature-based and deep neural net policies in continuous state and action spaces. We evaluate PRM-RL, both in simulation and on-robot, on two navigation tasks with non-trivial robot dynamics: end-to-end differential drive indoor navigation in office environments, and aerial cargo delivery in urban environments with load displacement constraints. Our results show improvement in task completion over both RL agents on their own and traditional sampling-based planners. In the indoor navigation task, PRM-RL successfully completes up to 215 m long trajectories under noisy sensor conditions, and the aerial cargo delivery completes flights over 1000 m without violating the task constraints in an environment 63 million times larger than used in training.Comment: 9 pages, 7 figure

    3D Motion Planning using Kinodynamically Feasible Motion Primitives in Unknown Environments

    Get PDF
    Autonomous vehicles are a great asset to society by helping perform many dangerous or tedious tasks. They have already been successfully employed for many practical applications, such as search and rescue, automated surveillance, exploration and mapping, sample collection, and remote inspection. In order to perform most tasks autonomously, the vehicle must be able to safely and efficiently navigate through its environment. The algorithms and techniques that allow an autonomous vehicle to find traversable paths to its destination defines the set of problems in robotics known as motion planning. This thesis presents a new motion planner that is capable of finding collision-free paths through an unknown environment while satisfying the kinodynamic constraints of the vehicle. This is done using a two step process. In the first step, a collision-free path is generated using a modified Probabilistic Roadmap (PRM) based planner by assuming unexplored areas are obstacle-free. As obstacles are detected, the planner will replan the path as necessary to ensure that it remains collision-free. In complex environments, it is often necessary to increase the size of the PRM graph during the replanning step so that the graph remains connected. However, this causes the algorithm to slow down significantly over time. To mitigate these issues, the novel local sampling and PRM regeneration techniques are used to increase the computational efficiency of the replanning step. The local sampling technique biases the search towards the neighborhood of the obstacle blocking the path. This encourages the planner to generate small detours around the obstacle instead of rerouting the whole path. The PRM regeneration technique is used to remove all non-critical nodes from the PRM graph. This is used to bound the size of the PRM graph so that it does not grow increasingly large over time. In the second step, the collision-free path is transformed into a series of kinodynamically feasible motion primitives using two novel algorithms: the heuristic re-sampling algorithm and the transformation algorithm. The heuristic re-sampling algorithm is a greedy heuristic algorithm that increases the clearance around the path while removing redundant segments. This algorithm can be applied to any piece-wise linear path, and is guaranteed to produce a solution that is at least as good as the initial path. The transformation algorithm is a method to convert a path into a series of kinodynamically feasible motion primitives. It is extremely efficient computationally, and can be applied to any piece-wise linear path. To achieve good computational performance with PRM based planners, it is necessary to use sampling strategies that can efficiently form connected graphs through narrow and complex regions of the configuration space. Many proposed sampling methods attempt to bias the sample density in favor of these difficult to connect areas. However, these methods do not distinguish between samples that lie inside narrow passages and those that lie along convex borders. The orthogonal bridge test is a novel sampling technique that can identify and reject samples that lie along convex borders. This allows connected PRM graphs to be constructed with fewer nodes, which leads to less collision checking and reduced runtimes. The presented algorithms are experimentally verified using an AR.Drone quadrotor unmanned aerial vehicle (UAV) and a custom built skid-steer unmanned ground vehicle (UGV). Using a simple kinematic model and a basic position controller, the AR.Drone is able to traverse a series of motion primitives with less than 0.3 m of crosstrack error. The skid-steer UGV is able to navigate through unknown environments filled with obstacles to reach a desired destination. Furthermore, the observed runtimes of the proposed motion planner suggest that it is fully capable of computing solution paths online. This is an important result, because online computation is necessary for efficient autonomous operations and it can not be achieved with many existing kinodynamic motion planners
    • …
    corecore