78 research outputs found

    FPGA-based High-Performance Collision Detection: An Enabling Technique for Image-Guided Robotic Surgery

    Get PDF
    Collision detection, which refers to the computational problem of finding the relative placement or con-figuration of two or more objects, is an essential component of many applications in computer graphics and robotics. In image-guided robotic surgery, real-time collision detection is critical for preserving healthy anatomical structures during the surgical procedure. However, the computational complexity of the problem usually results in algorithms that operate at low speed. In this paper, we present a fast and accurate algorithm for collision detection between Oriented-Bounding-Boxes (OBBs) that is suitable for real-time implementation. Our proposed Sweep and Prune algorithm can perform a preliminary filtering to reduce the number of objects that need to be tested by the classical Separating Axis Test algorithm, while the OBB pairs of interest are preserved. These OBB pairs are re-checked by the Separating Axis Test algorithm to obtain accurate overlapping status between them. To accelerate the execution, our Sweep and Prune algorithm is tailor-made for the proposed method. Meanwhile, a high performance scalable hardware architecture is proposed by analyzing the intrinsic parallelism of our algorithm, and is implemented on FPGA platform. Results show that our hardware design on the FPGA platform can achieve around 8X higher running speed than the software design on a CPU platform. As a result, the proposed algorithm can achieve a collision frame rate of 1 KHz, and fulfill the requirement for the medical surgery scenario of Robot Assisted Laparoscopy.published_or_final_versio

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    Artificial intelligence and automation in endoscopy and surgery

    Get PDF
    Modern endoscopy relies on digital technology, from high-resolution imaging sensors and displays to electronics connecting configurable illumination and actuation systems for robotic articulation. In addition to enabling more effective diagnostic and therapeutic interventions, the digitization of the procedural toolset enables video data capture of the internal human anatomy at unprecedented levels. Interventional video data encapsulate functional and structural information about a patient’s anatomy as well as events, activity and action logs about the surgical process. This detailed but difficult-to-interpret record from endoscopic procedures can be linked to preoperative and postoperative records or patient imaging information. Rapid advances in artificial intelligence, especially in supervised deep learning, can utilize data from endoscopic procedures to develop systems for assisting procedures leading to computer-assisted interventions that can enable better navigation during procedures, automation of image interpretation and robotically assisted tool manipulation. In this Perspective, we summarize state-of-the-art artificial intelligence for computer-assisted interventions in gastroenterology and surgery

    Nextmed: Automatic Imaging Segmentation, 3D Reconstruction, and 3D Model Visualization Platform Using Augmented and Virtual Reality

    Get PDF
    The visualization of medical images with advanced techniques, such as augmented reality and virtual reality, represent a breakthrough for medical professionals. In contrast to more traditional visualization tools lacking 3D capabilities, these systems use the three available dimensions. To visualize medical images in 3D, the anatomical areas of interest must be segmented. Currently, manual segmentation, which is the most commonly used technique, and semi-automatic approaches can be time consuming because a doctor is required, making segmentation for each individual case unfeasible. Using new technologies, such as computer vision and artificial intelligence for segmentation algorithms and augmented and virtual reality for visualization techniques implementation, we designed a complete platform to solve this problem and allow medical professionals to work more frequently with anatomical 3D models obtained from medical imaging. As a result, the Nextmed project, due to the different implemented software applications, permits the importation of digital imaging and communication on medicine (dicom) images on a secure cloud platform and the automatic segmentation of certain anatomical structures with new algorithms that improve upon the current research results. A 3D mesh of the segmented structure is then automatically generated that can be printed in 3D or visualized using both augmented and virtual reality, with the designed software systems. The Nextmed project is unique, as it covers the whole process from uploading dicom images to automatic segmentation, 3D reconstruction, 3D visualization, and manipulation using augmented and virtual reality. There are many researches about application of augmented and virtual reality for medical image 3D visualization; however, they are not automated platforms. Although some other anatomical structures can be studied, we focused on one case: a lung study. Analyzing the application of the platform to more than 1000 dicom images and studying the results with medical specialists, we concluded that the installation of this system in hospitals would provide a considerable improvement as a tool for medical image visualization

    sCAM: An Untethered Insertable Laparoscopic Surgical Camera Robot

    Get PDF
    Fully insertable robotic imaging devices represent a promising future of minimally invasive laparoscopic vision. Emerging research efforts in this field have resulted in several proof-of-concept prototypes. One common drawback of these designs derives from their clumsy tethering wires which not only cause operational interference but also reduce camera mobility. Meanwhile, these insertable laparoscopic cameras are manipulated without any pose information or haptic feedback, which results in open loop motion control and raises concerns about surgical safety caused by inappropriate use of force.This dissertation proposes, implements, and validates an untethered insertable laparoscopic surgical camera (sCAM) robot. Contributions presented in this work include: (1) feasibility of an untethered fully insertable laparoscopic surgical camera, (2) camera-tissue interaction characterization and force sensing, (3) pose estimation, visualization, and feedback with sCAM, and (4) robotic-assisted closed-loop laparoscopic camera control. Borrowing the principle of spherical motors, camera anchoring and actuation are achieved through transabdominal magnetic coupling in a stator-rotor manner. To avoid the tethering wires, laparoscopic vision and control communication are realized with dedicated wireless links based on onboard power. A non-invasive indirect approach is proposed to provide real-time camera-tissue interaction force measurement, which, assisted by camera-tissue interaction modeling, predicts stress distribution over the tissue surface. Meanwhile, the camera pose is remotely estimated and visualized using complementary filtering based on onboard motion sensing. Facilitated by the force measurement and pose estimation, robotic-assisted closed-loop control has been realized in a double-loop control scheme with shared autonomy between surgeons and the robotic controller.The sCAM has brought robotic laparoscopic imaging one step further toward less invasiveness and more dexterity. Initial ex vivo test results have verified functions of the implemented sCAM design and the proposed force measurement and pose estimation approaches, demonstrating the technical feasibility of a tetherless insertable laparoscopic camera. Robotic-assisted control has shown its potential to free surgeons from low-level intricate camera manipulation workload and improve precision and intuitiveness in laparoscopic imaging

    Sharing and viewing segments of electronic patient records service (SVSEPRS) using multidimensional database model

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The concentration on healthcare information technology has never been determined than it is today. This awareness arises from the efforts to accomplish the extreme utilization of Electronic Health Record (EHR). Due to the greater mobility of the population, EHR will be constructed and continuously updated from the contribution of one or many EPRs that are created and stored at different healthcare locations such as acute Hospitals, community services, Mental Health and Social Services. The challenge is to provide healthcare professionals, remotely among heterogeneous interoperable systems, with a complete view of the selective relevant and vital EPRs fragments of each patient during their care. Obtaining extensive EPRs at the point of delivery, together with ability to search for and view vital, valuable, accurate and relevant EPRs fragments can be still challenging. It is needed to reduce redundancy, enhance the quality of medical decision making, decrease the time needed to navigate through very high number of EPRs, which consequently promote the workflow and ease the extra work needed by clinicians. These demands was evaluated through introducing a system model named SVSEPRS (Searching and Viewing Segments of Electronic Patient Records Service) to enable healthcare providers supply high quality and more efficient services, redundant clinical diagnostic tests. Also inappropriate medical decision making process should be avoided via allowing all patients‟ previous clinical tests and healthcare information to be shared between various healthcare organizations. Multidimensional data model, which lie at the core of On-Line Analytical Processing (OLAP) systems can handle the duplication of healthcare services. This is done by allowing quick search and access to vital and relevant fragments from scattered EPRs to view more comprehensive picture and promote advances in the diagnosis and treatment of illnesses. SVSEPRS is a web based system model that helps participant to search for and view virtual EPR segments, using an endowed and well structured Centralised Multidimensional Search Mapping (CMDSM). This defines different quantitative values (measures), and descriptive categories (dimensions) allows clinicians to slice and dice or drill down to more detailed levels or roll up to higher levels to meet clinicians required fragment

    Haptics: state of the art survey

    Get PDF
    This paper presents a novel approach to the understanding of Haptic and its related fields where haptics is used extensively like in display systems, communication, different types of haptic devices, and interconnection of haptic displays where virtual environment should feel like equivalent physical systems. There have been escalating research interests on areas relating to haptic modality in recent years, towards multiple fields. However, there seems to be limited studies in determining the various subfields and interfacing and related information on haptic user interfaces and its influence on the fields mentioned. This paper aims to bring forth the theory behind the essence of Haptics and its Subfields like haptic interfaces and its applications
    • …
    corecore