17,643 research outputs found

    Exploiting programmable architectures for WiFi/ZigBee inter-technology cooperation

    Get PDF
    The increasing complexity of wireless standards has shown that protocols cannot be designed once for all possible deployments, especially when unpredictable and mutating interference situations are present due to the coexistence of heterogeneous technologies. As such, flexibility and (re)programmability of wireless devices is crucial in the emerging scenarios of technology proliferation and unpredictable interference conditions. In this paper, we focus on the possibility to improve coexistence performance of WiFi and ZigBee networks by exploiting novel programmable architectures of wireless devices able to support run-time modifications of medium access operations. Differently from software-defined radio (SDR) platforms, in which every function is programmed from scratch, our programmable architectures are based on a clear decoupling between elementary commands (hard-coded into the devices) and programmable protocol logic (injected into the devices) according to which the commands execution is scheduled. Our contribution is two-fold: first, we designed and implemented a cross-technology time division multiple access (TDMA) scheme devised to provide a global synchronization signal and allocate alternating channel intervals to WiFi and ZigBee programmable nodes; second, we used the OMF control framework to define an interference detection and adaptation strategy that in principle could work in independent and autonomous networks. Experimental results prove the benefits of the envisioned solution

    Wireless model-based predictive networked control system over cooperative wireless network

    Get PDF
    Owing to their distributed architecture, networked control systems (NCSs) are proven to be feasible in scenarios where a spatially distributed feedback control system is required. Traditionally, such NCSs operate over real-time wired networks. Recently, in order to achieve the utmost flexibility, scalability, ease of deployment, and maintainability, wireless networks such as IEEE 802.11 wireless local area networks (LANs) are being preferred over dedicated wired networks. However, conventional NCSs with event-triggered controllers and actuators cannot operate over such general purpose wireless networks since the stability of the system is compromised due to unbounded delays and unpredictable packet losses that are typical in the wireless medium. Approaching the wireless networked control problem from two perspectives, this work introduces a practical wireless NCS and an implementation of a cooperative medium access control protocol that work jointly to achieve decent control under severe impairments, such as unbounded delay, bursts of packet loss and ambient wireless traffic. The proposed system is evaluated on a dedicated test platform under numerous scenarios and significant performance gains are observed, making cooperative communications a strong candidate for improving the reliability of industrial wireless networks

    Scalable QoS-aware Mobility for Future Mobile Operators

    Get PDF
    Telecom operators and Internet service providers are heading for a new shift in communications paradigms. The forthcoming convergence of cellular and wireless data networks is often manifested in an “all IP approach” in which all communications are based on an end-to-end IP protocol framework. The approach to network design becomes user and service-centered, so that continuous reachability of mobile users and sustained communication capabilities are default requirements for a prospective architecture. In this article, we describe a network architecture which is able to provide seamless communication mobility, triggered either by the user or by the network, across multiple technologies. The architecture allows for media independent handovers and supports optimized mobility and resource management functions. The main focus of the article is on major technical highlights of mobility and quality-of-service (QoS) management subsystems for converged networks.Publicad

    Decentralized event-triggered control over wireless sensor/actuator networks

    Full text link
    In recent years we have witnessed a move of the major industrial automation providers into the wireless domain. While most of these companies already offer wireless products for measurement and monitoring purposes, the ultimate goal is to be able to close feedback loops over wireless networks interconnecting sensors, computation devices, and actuators. In this paper we present a decentralized event-triggered implementation, over sensor/actuator networks, of centralized nonlinear controllers. Event-triggered control has been recently proposed as an alternative to the more traditional periodic execution of control tasks. In a typical event-triggered implementation, the control signals are kept constant until the violation of a condition on the state of the plant triggers the re-computation of the control signals. The possibility of reducing the number of re-computations, and thus of transmissions, while guaranteeing desired levels of performance makes event-triggered control very appealing in the context of sensor/actuator networks. In these systems the communication network is a shared resource and event-triggered implementations of control laws offer a flexible way to reduce network utilization. Moreover reducing the number of times that a feedback control law is executed implies a reduction in transmissions and thus a reduction in energy expenditures of battery powered wireless sensor nodes.Comment: 13 pages, 3 figures, journal submissio

    Connecting the World of Embedded Mobiles: The RIOT Approach to Ubiquitous Networking for the Internet of Things

    Full text link
    The Internet of Things (IoT) is rapidly evolving based on low-power compliant protocol standards that extend the Internet into the embedded world. Pioneering implementations have proven it is feasible to inter-network very constrained devices, but had to rely on peculiar cross-layered designs and offer a minimalistic set of features. In the long run, however, professional use and massive deployment of IoT devices require full-featured, cleanly composed, and flexible network stacks. This paper introduces the networking architecture that turns RIOT into a powerful IoT system, to enable low-power wireless scenarios. RIOT networking offers (i) a modular architecture with generic interfaces for plugging in drivers, protocols, or entire stacks, (ii) support for multiple heterogeneous interfaces and stacks that can concurrently operate, and (iii) GNRC, its cleanly layered, recursively composed default network stack. We contribute an in-depth analysis of the communication performance and resource efficiency of RIOT, both on a micro-benchmarking level as well as by comparing IoT communication across different platforms. Our findings show that, though it is based on significantly different design trade-offs, the networking subsystem of RIOT achieves a performance equivalent to that of Contiki and TinyOS, the two operating systems which pioneered IoT software platforms

    A low-power opportunistic communication protocol for wearable applications

    Get PDF
    © 2015 IEEE.Recent trends in wearable applications demand flexible architectures being able to monitor people while they move in free-living environments. Current solutions use either store-download-offline processing or simple communication schemes with real-time streaming of sensor data. This limits the applicability of wearable applications to controlled environments (e.g, clinics, homes, or laboratories), because they need to maintain connectivity with the base station throughout the monitoring process. In this paper, we present the design and implementation of an opportunistic communication framework that simplifies the general use of wearable devices in free-living environments. It relies on a low-power data collection protocol that allows the end user to opportunistically, yet seamlessly manage the transmission of sensor data. We validate the feasibility of the framework by demonstrating its use for swimming, where the normal wireless communication is constantly interfered by the environment
    • 

    corecore