8,069 research outputs found

    A programmable logic controller based laboratory analysis of conventional and intelligent control schemes for non-liner systems

    Get PDF
    Published ArticleIntelligent Neural Network (NN) based control schemes have surmounted many of the limitations found in the conventional control approaches such as Proportional Integral Derivative (PID) control. Nevertheless, these modern control techniques have only recently been introduced for use on industrial computational platforms such as the Programmable Logic Controller (PLC). Intelligent control on PLCs thus remains an area that is open to further research and development. In this paper, a strongly non-linear mechatronic type system, namely the Ball-on-Wheel balancing system, is developed using a PLC as its control platform. The research details the implementation of an intelligent controller on a standard, medium specification PLC. The results from the intelligent controller are then compared to those produced by a variety of conventional controllers as physical parameters are varied. Finally, the system is presented as a stimulating educational tool that addresses the knowledge gap that exists in industry pertaining to the implementation of these intelligent control algorithms on PLCs

    The Evolution of Reaction-diffusion Controllers for Minimally Cognitive Agents

    Get PDF
    No description supplie

    The design of an indirect method for the human presence monitoring in the intelligent building

    Get PDF
    This article describes the design and verification of the indirect method of predicting the course of CO2 concentration (ppm) from the measured temperature variables Tindoor (degrees C) and the relative humidity rH(indoor) (%) and the temperature T-outdoor (degrees C) using the Artificial Neural Network (ANN) with the Bayesian Regulation Method (BRM) for monitoring the presence of people in the individual premises in the Intelligent Administrative Building (IAB) using the PI System SW Tool (PI-Plant Information enterprise information system). The CA (Correlation Analysis), the MSE (Root Mean Squared Error) and the DTW (Dynamic Time Warping) criteria were used to verify and classify the results obtained. Within the proposed method, the LMS adaptive filter algorithm was used to remove the noise of the resulting predicted course. In order to verify the method, two long-term experiments were performed, specifically from February 1 to February 28, 2015, from June 1 to June 28, 2015 and from February 8 to February 14, 2015. For the best results of the trained ANN BRM within the prediction of CO2, the correlation coefficient R for the proposed method was up to 92%. The verification of the proposed method confirmed the possibility to use the presence of people of the monitored IAB premises for monitoring. The designed indirect method of CO2 prediction has potential for reducing the investment and operating costs of the IAB in relation to the reduction of the number of implemented sensors in the IAB within the process of management of operational and technical functions in the IAB. The article also describes the design and implementation of the FEIVISUAL visualization application for mobile devices, which monitors the technological processes in the IAB. This application is optimized for Android devices and is platform independent. The application requires implementation of an application server that communicates with the data server and the application developed. The data of the application developed is obtained from the data storage of the PI System via a PI Web REST API (Application Programming Integration) client.Web of Science8art. no. 2

    Intelligent controllers for velocity tracking of two wheeled inverted pendulum mobile robot

    Get PDF
    Velocity tracking is one of the important objectives of vehicle, machines and mobile robots. A two wheeled inverted pendulum (TWIP) is a class of mobile robot that is open loop unstable with high nonlinearities which makes it difficult to control its velocity because of its nature of pitch falling if left unattended. In this work, three soft computing techniques were proposed to track a desired velocity of the TWIP. Fuzzy Logic Control (FLC), Neural Network Inverse Model control (NN) and an Adaptive Neuro-Fuzzy Inference System (ANFIS) were designed and simulated on the TWIP model. All the three controllers have shown practically good performance in tracking the desired speed and keeping the robot in upright position and ANFIS has shown slightly better performance than FLC, while NN consumes more energy

    Real time control of nonlinear dynamic systems using neuro-fuzzy controllers

    Get PDF
    The problem of real time control of a nonlinear dynamic system using intelligent control techniques is considered. The current trend is to incorporate neural networks and fuzzy logic into adaptive control strategies. The focus of this work is to investigate the current neuro-fuzzy approaches from literature and adapt them for a specific application. In order to achieve this objective, an experimental nonlinear dynamic system is considered. The motivation for this comes from the desire to solve practical problems and to create a test-bed which can be used to test various control strategies. The nonlinear dynamic system considered here is an unstable balance beam system that contains two fluid tanks, one at each end, and the balance is achieved by pumping the fluid back and forth from the tanks. A popular approach, called ANFIS (Adaptive Networks-based Fuzzy Inference Systems), which combines the structure of fuzzy logic controllers with the learning aspects from neural networks is considered as a basis for developing novel techniques, because it is considered to be one of the most general framework for developing adaptive controllers. However, in the proposed new method, called Generalized Network-based Fuzzy Inferencing Systems (GeNFIS), more conventional fuzzy schemes for the consequent part are used instead of using what is called the Sugeno type rules. Moreover, in contrast to ANFIS which uses a full set of rules, GeNFIS uses only a limited number of rules based on certain expert knowledge. GeNFIS is tested on the balance beam system, both in a real- time actual experiment and the simulation, and is found to perform better than a comparable ANFIS under supervised learning. Based on these results, several modifications of GeNFIS are considered, for example, synchronous defuzzification through triangular as well as bell shaped membership functions. Another modification involves simultaneous use of Sugeno type as well as conventional fuzzy schemes for the consequent part, in an effort to create a more flexible framework. Results of testing different versions of GeNFIS on the balance beam system are presented

    Human Being Emotion in Cognitive Intelligent Robotic Control Pt I: Quantum / Soft Computing Approach

    Get PDF
    Abstract. The article consists of two parts. Part I shows the possibility of quantum / soft computing optimizers of knowledge bases (QSCOptKB™) as the toolkit of quantum deep machine learning technology implementation in the solution’s search of intelligent cognitive control tasks applied the cognitive helmet as neurointerface. In particular, case, the aim of this part is to demonstrate the possibility of classifying the mental states of a human being operator in on line with knowledge extraction from electroencephalograms based on SCOptKB™ and QCOptKB™ sophisticated toolkit. Application of soft computing technologies to identify objective indicators of the psychophysiological state of an examined person described. The role and necessity of applying intelligent information technologies development based on computational intelligence toolkits in the task of objective estimation of a general psychophysical state of a human being operator shown. Developed information technology examined with special (difficult in diagnostic practice) examples emotion state estimation of autism children (ASD) and dementia and background of the knowledge bases design for intelligent robot of service use is it. Application of cognitive intelligent control in navigation of autonomous robot for avoidance of obstacles demonstrated.
    corecore