36 research outputs found

    A cloudification methodology for multidimensional analysis: Implementation and application to a railway power simulator

    Get PDF
    Many scientific areas make extensive use of computer simulations to study complex real-world processes. These computations are typically very resource-intensive and present scalability issues as experiments get larger even in dedicated clusters, since these are limited by their own hardware resources. Cloud computing raises as an option to move forward into the ideal unlimited scalability by providing virtually infinite resources, yet applications must be adapted to this new paradigm. This process of converting and/or migrating an application and its data in order to make use of cloud computing is sometimes known as cloudifying the application. We propose a generalist cloudification method based in the MapReduce paradigm to migrate scientific simulations into the cloud to provide greater scalability. We analysed its viability by applying it to a real-world railway power consumption simulatior and running the resulting implementation on Hadoop YARN over Amazon EC2. Our tests show that the cloudified application is highly scalable and there is still a large margin to improve the theoretical model and its implementations, and also to extend it to a wider range of simulations. We also propose and evaluate a multidimensional analysis tool based on the cloudified application. It generates, executes and evaluates several experiments in parallel, for the same simulation kernel. The results we obtained indicate that out methodology is suitable for resource intensive simulations and multidimensional analysis, as it improves infrastructure’s utilization, efficiency and scalability when running many complex experiments.This work has been partially funded under the grant TIN2013-41350-P of the Spanish Ministry of Economics and Competitiveness, and the COST Action IC1305 "Network for Sustainable Ultrascale Computing Platforms" (NESUS)

    Adaptation, deployment and evaluation of a railway simulator in cloud environments

    Get PDF
    Many scientific areas make extensive use of computer simulations to study realworld processes. As they become more complex and resource-intensive, traditional programming paradigms running on supercomputers have shown to be limited by their hardware resources. The Cloud and its elastic nature has been increasingly seen as a valid alternative for simulation execution, as it aims to provide virtually infinite resources, thus unlimited scalability. In order to bene t from this, simulators must be adapted to this paradigm since cloud migration tends to add virtualization and communication overhead. This work has the main objective of migrating a power consumption railway simulator to the Cloud, with minimal impact in the original code and preserving performance. We propose a data-centric adaptation based in MapReduce to distribute the simulation load across several nodes while minimising data transmission. We deployed our solution on an Amazon EC2 virtual cluster and measured its performance. We did the same in in our local cluster to compare the solution's performance against the original application when the Cloud's overhead is not present. Our tests show that the resulting application is highly scalable and shows a better overall performance regarding the original simulator in both environments. This document summarises the author's work during the whole adaptation development process .Ingeniería Informátic

    Controlling Network Latency in Mixed Hadoop Clusters: Do We Need Active Queue Management?

    Get PDF
    With the advent of big data, data center applications are processing vast amounts of unstructured and semi-structured data, in parallel on large clusters, across hundreds to thousands of nodes. The highest performance for these batch big data workloads is achieved using expensive network equipment with large buffers, which accommodate bursts in network traffic and allocate bandwidth fairly even when the network is congested. Throughput-sensitive big data applications are, however, often executed in the same data center as latency-sensitive workloads. For both workloads to be supported well, the network must provide both maximum throughput and low latency. Progress has been made in this direction, as modern network switches support Active Queue Management (AQM) and Explicit Congestion Notifications (ECN), both mechanisms to control the level of queue occupancy, reducing the total network latency. This paper is the first study of the effect of Active Queue Management on both throughput and latency, in the context of Hadoop and the MapReduce programming model. We give a quantitative comparison of four different approaches for controlling buffer occupancy and latency: RED and CoDel, both standalone and also combined with ECN and DCTCP network protocol, and identify the AQM configurations that maintain Hadoop execution time gains from larger buffers within 5%, while reducing network packet latency caused by bufferbloat by up to 85%. Finally, we provide recommendations to administrators of Hadoop clusters as to how to improve latency without degrading the throughput of batch big data workloads.The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7/2007–2013) under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain under the contracts TIN2012-34557 and TIN2015-65316-P, Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), HiPEAC-3 Network of Excellence (ICT- 287759), and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    E-EON : Energy-Efficient and Optimized Networks for Hadoop

    Get PDF
    Energy efficiency and performance improvements have been two of the major concerns of current Data Centers. With the advent of Big Data, more information is generated year after year, and even the most aggressive predictions of the largest network equipment manufacturer have been surpassed due to the non-stop growing network traffic generated by current Big Data frameworks. As, currently, one of the most famous and discussed frameworks designed to store, retrieve and process the information that is being consistently generated by users and machines, Hadoop has gained a lot of attention from the industry in recent years and presently its name describes a whole ecosystem designed to tackle the most varied requirements of today’s cloud applications. This thesis relates to Hadoop clusters, mainly focused on their interconnects, which is commonly considered to be the bottleneck of such ecosystem. We conducted research focusing on energy efficiency and also on performance optimizations as improvements on cluster throughput and network latency. Regarding the energy consumption, a significant proportion of a data center's energy consumption is caused by the network, which stands for 12% of the total system power at full load. With the non-stop growing network traffic, it is desired by industry and academic community that network energy consumption should be proportional to its utilization. Considering cluster performance, although Hadoop is a network throughput-sensitive workload with less stringent requirements for network latency, there is an increasing interest in running batch and interactive workloads concurrently on the same cluster. Doing so maximizes system utilization, to obtain the greatest benefits from the capital and operational expenditures. For this to happen, cluster throughput should not be impacted when network latency is minimized. The two biggest challenges faced during the development of this thesis were related to achieving near proportional energy consumption for the interconnects and also improving the network latency found on Hadoop clusters, while having virtually no loss on cluster throughput. Such challenges led to comparable sized opportunity: proposing new techniques that must solve such problems from the current generation of Hadoop clusters. We named E-EON the set of techniques presented in this work, which stands for Energy Efficient and Optimized Networks for Hadoop. E-EON can be used to reduce the network energy consumption and yet, to reduce network latency while cluster throughput is improved at the same time. Furthermore, such techniques are not exclusive to Hadoop and they are also expected to have similar benefits if applied to any other Big Data framework infrastructure that fits the problem characterization we presented throughout this thesis. With E-EON we were able to reduce the energy consumption by up to 80% compared to the state-of-the art technique. We were also able to reduce network latency by up to 85% and in some cases, even improve cluster throughput by 10%. Although these were the two major accomplishment from this thesis, we also present minor benefits which translate to easier configuration compared to the stat-of-the-art techniques. Finally, we enrich the discussions found in this thesis with recommendations targeting network administrators and network equipment manufacturers.La eficiencia energética y las mejoras de rendimiento han sido dos de las principales preocupaciones de los Data Centers actuales. Con el arribo del Big Data, se genera más información año con año, incluso las predicciones más agresivas de parte del mayor fabricante de dispositivos de red se han superado debido al continuo tráfico de red generado por los sistemas de Big Data. Actualmente, uno de los más famosos y discutidos frameworks desarrollado para almacenar, recuperar y procesar la información generada consistentemente por usuarios y máquinas, Hadoop acaparó la atención de la industria en los últimos años y actualmente su nombre describe a todo un ecosistema diseñado para abordar los requisitos más variados de las aplicaciones actuales de Cloud Computing. Esta tesis profundiza sobre los clusters Hadoop, principalmente enfocada a sus interconexiones, que comúnmente se consideran el cuello de botella de dicho ecosistema. Realizamos investigaciones centradas en la eficiencia energética y también en optimizaciones de rendimiento como mejoras en el throughput de la infraestructura y de latencia de la red. En cuanto al consumo de energía, una porción significativa de un Data Center es causada por la red, representada por el 12 % de la potencia total del sistema a plena carga. Con el tráfico constantemente creciente de la red, la industria y la comunidad académica busca que el consumo energético sea proporcional a su uso. Considerando las prestaciones del cluster, a pesar de que Hadoop mantiene una carga de trabajo sensible al rendimiento de red aunque con requisitos menos estrictos sobre la latencia de la misma, existe un interés creciente en ejecutar aplicaciones interactivas y secuenciales de manera simultánea sobre dicha infraestructura. Al hacerlo, se maximiza la utilización del sistema para obtener los mayores beneficios al capital y gastos operativos. Para que esto suceda, el rendimiento del sistema no puede verse afectado cuando se minimiza la latencia de la red. Los dos mayores desafíos enfrentados durante el desarrollo de esta tesis estuvieron relacionados con lograr un consumo energético cercano a la cantidad de interconexiones y también a mejorar la latencia de red encontrada en los clusters Hadoop al tiempo que la perdida del rendimiento de la infraestructura es casi nula. Dichos desafíos llevaron a una oportunidad de tamaño semejante: proponer técnicas novedosas que resuelven dichos problemas a partir de la generación actual de clusters Hadoop. Llamamos a E-EON (Energy Efficient and Optimized Networks) al conjunto de técnicas presentadas en este trabajo. E-EON se puede utilizar para reducir el consumo de energía y la latencia de la red al mismo tiempo que el rendimiento del cluster se mejora. Además tales técnicas no son exclusivas de Hadoop y también se espera que tengan beneficios similares si se aplican a cualquier otra infraestructura de Big Data que se ajuste a la caracterización del problema que presentamos a lo largo de esta tesis. Con E-EON pudimos reducir el consumo de energía hasta en un 80% en comparación con las técnicas encontradas en la literatura actual. También pudimos reducir la latencia de la red hasta en un 85% y, en algunos casos, incluso mejorar el rendimiento del cluster en un 10%. Aunque estos fueron los dos principales logros de esta tesis, también presentamos beneficios menores que se traducen en una configuración más sencilla en comparación con las técnicas más avanzadas. Finalmente, enriquecimos las discusiones encontradas en esta tesis con recomendaciones dirigidas a los administradores de red y a los fabricantes de dispositivos de red

    On Understanding the Energy Impact of Speculative Execution in Hadoop

    Get PDF
    International audienceHadoop emerged as an important system for large- scale data analysis. Speculative execution is a key feature in Hadoop that is extensively leveraged in clouds: it is used to mask slow tasks (i.e., stragglers) — resulted from resource contention and heterogeneity in clouds — by launching speculative task copies on other machines. However, speculative execution is not cost-free and may result in performance degradation and extra resource and energy consumption. While prior literature has been dedicated to improving stragglers detection to cope with the inevitable heterogeneity in clouds, little work is focusing on understanding the implications of speculative execution on the performance and energy consumption in Hadoop cluster. In this paper, we have designed a set of experiments to evaluate the impact of speculative execution on the performance and energy consumption of Hadoop in homo- and heterogeneous environments. Our studies reveal that speculative execution may sometimes reduce, sometimes increase the energy consumption of Hadoop clusters. This strongly depends on the reduction in the execution time of MapReduce applications and on the extra power consumption introduced by speculative execution. Moreover, we show that the extra power consumption varies in-between applications and is contributed to by three main factors: the duration of speculative tasks, the idle time, and the allocation of speculative tasks. To the best of our knowledge, our work provides the first deep look into the energy efficiency of speculative execution in Hadoop

    Workload Interleaving with Performance Guarantees in Data Centers

    Get PDF
    In the era of global, large scale data centers residing in clouds, many applications and users share the same pool of resources for the purposes of reducing energy and operating costs, and of improving availability and reliability. Along with the above benefits, resource sharing also introduces performance challenges: when multiple workloads access the same resources concurrently, contention may occur and introduce delays in the performance of individual workloads. Providing performance isolation to individual workloads needs effective management methodologies. The challenges of deriving effective management methodologies lie in finding accurate, robust, compact metrics and models to drive algorithms that can meet different performance objectives while achieving efficient utilization of resources. This dissertation proposes a set of methodologies aiming at solving the challenging performance isolation problem in workload interleaving in data centers, focusing on both storage components and computing components. at the storage node level, we focus on methodologies for better interleaving user traffic with background workloads, such as tasks for improving reliability, availability, and power savings. More specifically, a scheduling policy for background workload based on the statistical characteristics of the system busy periods and a methodology that quantitatively estimates the performance impact of power savings are developed. at the storage cluster level, we consider methodologies on how to efficiently conduct work consolidation and schedule asynchronous updates without violating user performance targets. More specifically, we develop a framework that can estimate beforehand the benefits and overheads of each option in order to automate the process of reaching intelligent consolidation decisions while achieving faster eventual consistency. at the computing node level, we focus on improving workload interleaving at off-the-shelf servers as they are the basic building blocks of large-scale data centers. We develop priority scheduling middleware that employs different policies to schedule background tasks based on the instantaneous resource requirements of the high priority applications running on the server node. Finally, at the computing cluster level, we investigate popular computing frameworks for large-scale data intensive distributed processing, such as MapReduce and its Hadoop implementation. We develop a new Hadoop scheduler called DyScale to exploit capabilities offered by heterogeneous cores in order to achieve a variety of performance objectives

    A hybrid framework of iterative MapReduce and MPI for molecular dynamics applications

    Get PDF
    Developing platforms for large scale data processing has been a great interest to scientists. Hadoop is a widely used computational platform which is a fault-tolerant distributed system for data storage due to HDFS (Hadoop Distributed File System) and performs fault-tolerant distributed data processing in parallel due to MapReduce framework. It is quite often that actual computations require multiple MapReduce cycles, which needs chained MapReduce jobs. However, Design by Hadoop is poor in addressing problems with iterative structures. In many iterative problems, some invariant data is required by every MapReduce cycle. The same data is uploaded to Hadoop file system in every MapReduce cycle, causing repeated data delivering and unnecessary time cost in transferring this data. In addition, although Hadoop can process data in parallel, it does not support MPI in computing. In any Map/Reduce task, the computation must be serial. This results in inefficient scientific computations wrapped in Map/Reduce tasks because the computation can not be distributed over a Hadoop cluster, especially a Hadoop cluster on a traditional high performance computing cluster. Computational technologies have been extensively investigated to be applied into many application domains. Since the presence of Hadoop, scientists have applied the MapReduce framework to biological sciences, chemistry, medical sciences, and other areas to efficiently process huge data sets. In our research, we proposed a hybrid framework of iterative MapReduce and MPI for molecular dynamics applications. We carried out molecular dynamics simulations with the implemented hybrid framework. We improved the capability and performance of Hadoop by adding a MPI module to Hadoop. The MPI module enables Hadoop to monitor and manage the resources of Hadoop cluster so that computations incurred in Map/Reduce tasks can be performed in a parallel manner. We also applied the local caching mechanism to avoid data delivery redundancy to make the computing more efficient. Our hybrid framework inherits features of Hadoop and improves computing efficiency of Hadoop. The targeting application domain of our research is molecular dynamics simulation. However, the potential use of our iterative MapReduce framework with MPI is broad. It can be used by any applications which contain single or multiple MapReduce iterations, invoke serial or parallel (MPI) computations in Map phase or Reduce phase of Hadoop

    E-EON : Energy-Efficient and Optimized Networks for Hadoop

    Get PDF
    Energy efficiency and performance improvements have been two of the major concerns of current Data Centers. With the advent of Big Data, more information is generated year after year, and even the most aggressive predictions of the largest network equipment manufacturer have been surpassed due to the non-stop growing network traffic generated by current Big Data frameworks. As, currently, one of the most famous and discussed frameworks designed to store, retrieve and process the information that is being consistently generated by users and machines, Hadoop has gained a lot of attention from the industry in recent years and presently its name describes a whole ecosystem designed to tackle the most varied requirements of today’s cloud applications. This thesis relates to Hadoop clusters, mainly focused on their interconnects, which is commonly considered to be the bottleneck of such ecosystem. We conducted research focusing on energy efficiency and also on performance optimizations as improvements on cluster throughput and network latency. Regarding the energy consumption, a significant proportion of a data center's energy consumption is caused by the network, which stands for 12% of the total system power at full load. With the non-stop growing network traffic, it is desired by industry and academic community that network energy consumption should be proportional to its utilization. Considering cluster performance, although Hadoop is a network throughput-sensitive workload with less stringent requirements for network latency, there is an increasing interest in running batch and interactive workloads concurrently on the same cluster. Doing so maximizes system utilization, to obtain the greatest benefits from the capital and operational expenditures. For this to happen, cluster throughput should not be impacted when network latency is minimized. The two biggest challenges faced during the development of this thesis were related to achieving near proportional energy consumption for the interconnects and also improving the network latency found on Hadoop clusters, while having virtually no loss on cluster throughput. Such challenges led to comparable sized opportunity: proposing new techniques that must solve such problems from the current generation of Hadoop clusters. We named E-EON the set of techniques presented in this work, which stands for Energy Efficient and Optimized Networks for Hadoop. E-EON can be used to reduce the network energy consumption and yet, to reduce network latency while cluster throughput is improved at the same time. Furthermore, such techniques are not exclusive to Hadoop and they are also expected to have similar benefits if applied to any other Big Data framework infrastructure that fits the problem characterization we presented throughout this thesis. With E-EON we were able to reduce the energy consumption by up to 80% compared to the state-of-the art technique. We were also able to reduce network latency by up to 85% and in some cases, even improve cluster throughput by 10%. Although these were the two major accomplishment from this thesis, we also present minor benefits which translate to easier configuration compared to the stat-of-the-art techniques. Finally, we enrich the discussions found in this thesis with recommendations targeting network administrators and network equipment manufacturers.La eficiencia energética y las mejoras de rendimiento han sido dos de las principales preocupaciones de los Data Centers actuales. Con el arribo del Big Data, se genera más información año con año, incluso las predicciones más agresivas de parte del mayor fabricante de dispositivos de red se han superado debido al continuo tráfico de red generado por los sistemas de Big Data. Actualmente, uno de los más famosos y discutidos frameworks desarrollado para almacenar, recuperar y procesar la información generada consistentemente por usuarios y máquinas, Hadoop acaparó la atención de la industria en los últimos años y actualmente su nombre describe a todo un ecosistema diseñado para abordar los requisitos más variados de las aplicaciones actuales de Cloud Computing. Esta tesis profundiza sobre los clusters Hadoop, principalmente enfocada a sus interconexiones, que comúnmente se consideran el cuello de botella de dicho ecosistema. Realizamos investigaciones centradas en la eficiencia energética y también en optimizaciones de rendimiento como mejoras en el throughput de la infraestructura y de latencia de la red. En cuanto al consumo de energía, una porción significativa de un Data Center es causada por la red, representada por el 12 % de la potencia total del sistema a plena carga. Con el tráfico constantemente creciente de la red, la industria y la comunidad académica busca que el consumo energético sea proporcional a su uso. Considerando las prestaciones del cluster, a pesar de que Hadoop mantiene una carga de trabajo sensible al rendimiento de red aunque con requisitos menos estrictos sobre la latencia de la misma, existe un interés creciente en ejecutar aplicaciones interactivas y secuenciales de manera simultánea sobre dicha infraestructura. Al hacerlo, se maximiza la utilización del sistema para obtener los mayores beneficios al capital y gastos operativos. Para que esto suceda, el rendimiento del sistema no puede verse afectado cuando se minimiza la latencia de la red. Los dos mayores desafíos enfrentados durante el desarrollo de esta tesis estuvieron relacionados con lograr un consumo energético cercano a la cantidad de interconexiones y también a mejorar la latencia de red encontrada en los clusters Hadoop al tiempo que la perdida del rendimiento de la infraestructura es casi nula. Dichos desafíos llevaron a una oportunidad de tamaño semejante: proponer técnicas novedosas que resuelven dichos problemas a partir de la generación actual de clusters Hadoop. Llamamos a E-EON (Energy Efficient and Optimized Networks) al conjunto de técnicas presentadas en este trabajo. E-EON se puede utilizar para reducir el consumo de energía y la latencia de la red al mismo tiempo que el rendimiento del cluster se mejora. Además tales técnicas no son exclusivas de Hadoop y también se espera que tengan beneficios similares si se aplican a cualquier otra infraestructura de Big Data que se ajuste a la caracterización del problema que presentamos a lo largo de esta tesis. Con E-EON pudimos reducir el consumo de energía hasta en un 80% en comparación con las técnicas encontradas en la literatura actual. También pudimos reducir la latencia de la red hasta en un 85% y, en algunos casos, incluso mejorar el rendimiento del cluster en un 10%. Aunque estos fueron los dos principales logros de esta tesis, también presentamos beneficios menores que se traducen en una configuración más sencilla en comparación con las técnicas más avanzadas. Finalmente, enriquecimos las discusiones encontradas en esta tesis con recomendaciones dirigidas a los administradores de red y a los fabricantes de dispositivos de red.Postprint (published version
    corecore