1,136 research outputs found

    Automatic Number Plate Recognition on FPGA

    Get PDF
    Automatic Number Plate Recognition (ANPR) systems have become one of the most important components in the current Intelligent Transportation Systems (ITS). In this paper, a FPGA implementation of a complete ANPR system which consists of Number Plate Localisation (NPL), Character Segmentation (CS), and Optical Character Recognition (OCR) is presented. The Mentor Graphics RC240 FPGA development board was used for the implementation, where only 80% of the available on-chip slices of a Virtex-4 LX60 FPGA have been used. The whole system runs with a maximum frequency of 57.6 MHz and is capable of processing one image in 11ms with a successful recognition rate of 93%

    Stereo Matching in Address-Event-Representation (AER) Bio-Inspired Binocular Systems in a Field-Programmable Gate Array (FPGA)

    Get PDF
    In stereo-vision processing, the image-matching step is essential for results, although it involves a very high computational cost. Moreover, the more information is processed, the more time is spent by the matching algorithm, and the more ine cient it is. Spike-based processing is a relatively new approach that implements processing methods by manipulating spikes one by one at the time they are transmitted, like a human brain. The mammal nervous system can solve much more complex problems, such as visual recognition by manipulating neuron spikes. The spike-based philosophy for visual information processing based on the neuro-inspired address-event-representation (AER) is currently achieving very high performance. The aim of this work was to study the viability of a matching mechanism in stereo-vision systems, using AER codification and its implementation in a field-programmable gate array (FPGA). Some studies have been done before in an AER system with monitored data using a computer; however, this kind of mechanism has not been implemented directly on hardware. To this end, an epipolar geometry basis applied to AER systems was studied and implemented, with other restrictions, in order to achieve good results in a real-time scenario. The results and conclusions are shown, and the viability of its implementation is proven.Ministerio de Economía y Competitividad TEC2016-77785-

    Digital image enhancement by brightness and contrast manipulation using Verilog hardware description language

    Get PDF
    A foggy environment may cause digitally captured images to appear blurry, dim, or low in contrast. This will impact computer vision systems that rely on image information. With the need for real-time image information, such as a plate number recognition system, a simple yet effective image enhancement algorithm using a hardware implementation is very much needed to fulfil the need. To improve images that suffer from low exposure and hazy, the hardware implementations are usually based on complex algorithms. Hence, the aim of this paper is to propose a less complex enhancement algorithm for hardware implementation that is able to improve the quality of such images. The proposed method simply combines brightness and contrast manipulation to enhance the image. In order to see the performance of the proposed method, a total of 100 vehicle registration number images were collected, enhanced, and evaluated. The evaluation results were compared to two other enhancement methods quantitatively and qualitatively. Quantitative evaluation is done by evaluating the output image using peak signal-to-noise ratio and mean-square error evaluation metrics, while a survey is done to evaluate the output image qualitatively. Based on the quantitative evaluation results, our proposed method outperforms the other two enhancement methods

    Pay as You Go: A Generic Crypto Tolling Architecture

    Full text link
    The imminent pervasive adoption of vehicular communication, based on dedicated short-range technology (ETSI ITS G5 or IEEE WAVE), 5G, or both, will foster a richer service ecosystem for vehicular applications. The appearance of new cryptography based solutions envisaging digital identity and currency exchange are set to stem new approaches for existing and future challenges. This paper presents a novel tolling architecture that harnesses the availability of 5G C-V2X connectivity for open road tolling using smartphones, IOTA as the digital currency and Hyperledger Indy for identity validation. An experimental feasibility analysis is used to validate the proposed architecture for secure, private and convenient electronic toll payment

    Intraframe Scene Capturing and Speed Measurement Based on Superimposed Image: New Sensor Concept for Vehicle Speed Measurement

    Get PDF
    A vision based vehicle speed measurement method is presented in this paper. The proposed intraframe method calculates speed estimates based on a single frame of a single camera. With a special double exposure, a superimposed image can be obtained, where motion blur appears significantly only in the bright regions of the otherwise sharp image. This motion blur contains information of the movement of bright objects during the exposure. Most papers in the field of motion blur are aiming at the removal of this image degradation effect. In this work, we utilize it for a novel speed measurement approach. An applicable sensor structure and exposure-control system are also shown, as well as the applied image processing methods and experimental results. © 2016 Mate Nemeth and Akos Zarandy

    Cyber-physical system based on image recognition to improve traffic flow: A case study

    Get PDF
    Vehicular traffic in metropolitan areas turns congested along either paths or periods. As a case study, we have considered a mass transport system with a bus fleet that rides over exclusive lanes across streets and avenues in an urban area that does not allow the circulation of lightweight vehicles, cargo, and motorcycles. This traffic flow becomes congested due to the absence of restriction policies based on criteria. Moreover, the exclusive lanes are at ground level, decreasing lanes for other vehicles. The main objective of this proposal consists of controlling the access to the exclusive lanes by a cyber-physical system following authorization conditions, verifying the permission status of a vehicle by the accurate recognition of license plates to reduce traffic congestion. Therefore, in the case of invading an exclusive lane without permission, the vehicle owner gets a notification of the fine with the respective evidence

    Implementation of License Plate Recognition Monitoring System using Neural Network on Solar Powered Microcontroller

    Get PDF
    One automatic system for monitoring the presence of vehicles in a parking zone is an indispensable mean of an area such as services building, institutions, and other organizations, which accomodated many vehicles. A tracking record is the most important matter when the vehicle leaves the parking area. Manually, one parking officer will be needed to do the job. However, when using such an automated parking system, then this officers' job can be replaced. The vehicle license plate recording system is designed to use electronic-vision devices as a fundamental device for detecting the presence of vehicle. Vehicle license plates are detected using a digital camera which captured by the camera module on the Raspberry-Pi mini-pc microcontroller device, in addition to the detection of ultrasonic sensors that capture the position of vehicle objects. The process of reading vehicle numbers in an intelligent system of artificial neural networks to extracts each character of the license plate so that each number and letter can be recognized. Meanwhile, the detection of the ultrasonic parking sensor is a complementary confirmation indicating the presence of a vehicle object being monitored. The combination of solar power as the power supply for this automatic system is an important set-up that makes the system's electricity able to run independently. This monitoring system is prepared to help increase vehicle security automatically
    corecore