18,182 research outputs found

    Dynamic gesture recognition using PCA with multi-scale theory and HMM

    Get PDF
    In this paper, a dynamic gesture recognition system is presented which requires no special hardware other than a Webcam. The system is based on a novel method combining Principal Component Analysis (PCA) with hierarchical multi-scale theory and Discrete Hidden Markov Models (DHMM). We use a hierarchical decision tree based on multiscale theory. Firstly we convolve all members of the training data with a Gaussian kernel, which blurs differences between images and reduces their separation in feature space. This reduces the number of eigenvectors needed to describe the data. A principal component space is computed from the convolved data. We divide the data in this space into two clusters using the k-means algorithm. Then the level of blurring is reduced and PCA is applied to each of the clusters separately. A new principal component space is formed from each cluster. Each of these spaces is then divided into two and the process is repeated. We thus produce a binary tree of principal component spaces where each level of the tree represents a different degree of blurring. The search time is then proportional to the depth of the tree, which makes it possible to search hundreds of gestures in real time. The output of the decision tree is then input into DHMM to recognize temporal information

    Activity Recognition using Hierarchical Hidden Markov Models on Streaming Sensor Data

    Full text link
    Activity recognition from sensor data deals with various challenges, such as overlapping activities, activity labeling, and activity detection. Although each challenge in the field of recognition has great importance, the most important one refers to online activity recognition. The present study tries to use online hierarchical hidden Markov model to detect an activity on the stream of sensor data which can predict the activity in the environment with any sensor event. The activity recognition samples were labeled by the statistical features such as the duration of activity. The results of our proposed method test on two different datasets of smart homes in the real world showed that one dataset has improved 4% and reached (59%) while the results reached 64.6% for the other data by using the best methods

    Using multiple visual tandem streams in audio-visual speech recognition

    Get PDF
    The method which is called the "tandem approach" in speech recognition has been shown to increase performance by using classifier posterior probabilities as observations in a hidden Markov model. We study the effect of using visual tandem features in audio-visual speech recognition using a novel setup which uses multiple classifiers to obtain multiple visual tandem features. We adopt the approach of multi-stream hidden Markov models where visual tandem features from two different classifiers are considered as additional streams in the model. It is shown in our experiments that using multiple visual tandem features improve the recognition accuracy in various noise conditions. In addition, in order to handle asynchrony between audio and visual observations, we employ coupled hidden Markov models and obtain improved performance as compared to the synchronous model
    corecore