38 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationFemoroacetabular impingement (FAI) describes subtle structural abnormalities, including femoral asphericity and acetabular overcoverage, which reduce clearance in the hip joint. FAI is a common cause of hip pain for young, athletic adults. The first theme of this dissertation investigated if FAI morphology is more prevalent in athletes and if physical exams could be used to identify individuals with underlying FAI morphology. In a cohort of collegiate football players, 95% were found to have radiographic abnormalities consistent with those seen in FAI patients. This finding not only suggests that athletes, such as football players, may have an increased risk for developing symptomatic FAI, but also highlights that FAI morphology may frequently occur in asymptomatic subjects. In the same cohort, radiographic measures of femoral asphericity and femoral head-neck offset were mildly correlated to maximum internal rotation. As such, athletes with diminished internal rotation in whom hip pain develops should be evaluated for FAI. Altered articulation in FAI hips is believed to cause chondrolabral damage and may lead to osteoarthritis, but FAI kinematics have not been accurately quantified. To this end, the second theme of this dissertation focused on developing, validating, and applying a dual fluoroscopy and model-based tracking protocol to accurately quantify three-dimensional in vivo hip kinematics. In a cadaver experiment, model-based tracking was compared to the reference standard, dynamic radiostereometric analysis. Model-based tracking was found to have a positional error less than 0.48 mm and rotational error was less than 0.58°. The methodology was then applied to evaluate a cohort of asymptomatic control subjects and three patients with differing FAI morphology. The results, which represent the most accurate data collected on hip kinematics to date, demonstrate that hip articulation is a highly complex process, including translation, pelvic motion, no bone contact, and labrum involvement in large ranges of motion. Collected data provide necessary baseline results for future comparison studies and could be used to validate computer simulations of impingement, guide pre-operative planning, and serve as boundary conditions in finite element models investigating chondrolabral mechanics

    Multi-modal Image Registration

    Full text link
    In different areas, particularly medical image analysis, there is a vital need to access and analyse dynamic three dimensional (3D) images of the anatomical structures of the human body. This can enable specialists to track events as well as clinically conduct and evaluate surgical and radio therapeutical procedures. For example, measuring the 3D kinematics of knee joints in a dynamic manner is essential for understanding their normal functions and diagnosing any pathology, such as ligament injury and osteoarthritis. For evaluations of subsequent treatments, such as surgery and rehabilitation, and designs of joint replacements, having knowledge of the movements of knee joints is necessary. Image registration is increasingly being applied to medical image analysis. Whereas in mono-modal registration, the images to be registered are acquired by the same sensor, in multi-modal image registration, they can be taken from different devices or imaging protocols which makes this registration process much more challenging. The invasive or non-invasive nature of the registration method used, the computational time it requires as well as its accuracy and robustness against a large range of initial displacements are the most important features used for its evaluation. As currently available approaches have limited capabilities to register images with large initial displacements and are either not sufficiently accurate or very computationally expensive, the objective of this research is to propose new registration methods, that provide dynamic 3D images, to address these issues. In the first part of this study, I conducted research on registering an individuals’ natural knee bones that can provide 3D information of knee joint kinematics which can be very helpful for improving the accuracy of diagnosis and enabling targeted treatments. A fast, accurate and robust hybrid rigid body registration method based on two different multi-modal similarity measures, the edge position difference (EPD) and sum-of-conditional variance (SCV), is proposed. It uses a gradient descent optimisation technique to register multi-modal images and determine the best transformation parameters. It helps to achieve a trade-off among different challenges, including time complexity, accuracy and robustness against a large range of initial displacements. To evaluate it, several experiments were performed on two different databases: one collected from the knee bones of four patients and the other from three knee cadavers installed on a mechanical positioning system, with the results showing that this method is accurate, fast and robust against large initial displacement. Then, I conducted research on registering implanted human knee joints and proposed a non-invasive, robust 3D-to-2D registration method which can be used for 3D evaluations of the status of knee implants after joint replacement surgeries. In this method, 3D models of the implants for an individual with the relevant post-operative fluoroscopy frames are able to be used in the registration process. As a result, it is possible to perform 3D analysis at any time after a surgery by simply taking single-plane radiographs. This approach uses the EPD multi-modal similarity measure together with a steepest descent optimisation method. It applies coarse-to-fine registration steps to determine the transformation parameters that lead to the best alignment between the model used and X-ray images to be registered. The experimental results showed that not only does the proposed registration method have a high success rate but that it is also much faster than the most relevant competitive approach. Although the experiments were designed for a 3D analysis of total knee arthroplasty (TKA) components, this proposed method can be applied to other joints such as the ankle or hip. In the final part of my research, I developed a multi-frame 2D fluoroscopy to 3D model registration method for measuring the kinematics of post-operative knee joints. It uses a coarse-to-fine approach and applies the normalised EPD (NEPD) and SCV similarity measures together with a gradient descent optimisation method and an interpolation estimation one. In order to measure the kinematics of post- operative knee joints, after a TKA surgery, a 3D knee implant model can be registered with a number of single-plane fluoroscopy frames of the patient’s knee. Generally, when this number is quite high, the computational cost for registering the frames and a 3D model is expensive. Therefore, in order to speed up the registration process, a cubic spline interpolation prediction method is applied to initialise and estimate the 3D positions of the 3D model in each fluoroscopy frame instead of applying a registration algorithm on all the frames, one after the other. The estimated 3D positions are then tuned using a registration improvement step. The experimental results demonstrated that the proposed registration method is much faster than the best existing one and achieves almost the same accuracy. It also provides smooth registration results which can lead to more natural 3D modelling of joint movements

    Applied AI/ML for automatic customisation of medical implants

    Get PDF
    Most knee replacement surgeries are performed using ‘off-the-shelf’ implants, supplied with a set number of standardised sizes. X-rays are taken during pre-operative assessment and used by clinicians to estimate the best options for patients. Manual templating and implant size selection have, however, been shown to be inaccurate, and frequently the generically shaped products do not adequately fit patients’ unique anatomies. Furthermore, off-the-shelf implants are typically made from solid metal and do not exhibit mechanical properties like the native bone. Consequently, the combination of these factors often leads to poor outcomes for patients. Various solutions have been outlined in the literature for customising the size, shape, and stiffness of implants for the specific needs of individuals. Such designs can be fabricated via additive manufacturing which enables bespoke and intricate geometries to be produced in biocompatible materials. Despite this, all customisation solutions identified required some level of manual input to segment image files, identify anatomical features, and/or drive design software. These tasks are time consuming, expensive, and require trained resource. Almost all currently available solutions also require CT imaging, which adds further expense, incurs high levels of potentially harmful radiation, and is not as commonly accessible as X-ray imaging. This thesis explores how various levels of knee replacement customisation can be completed automatically by applying artificial intelligence, machine learning and statistical methods. The principal output is a software application, believed to be the first true ‘mass-customisation’ solution. The software is compatible with both 2D X-ray and 3D CT data and enables fully automatic and accurate implant size prediction, shape customisation and stiffness matching. It is therefore seen to address the key limitations associated with current implant customisation solutions and will hopefully enable the benefits of customisation to be more widely accessible.Open Acces

    In vitro assessment of the primary stability of the acetabular component in hip arthroplasty

    Get PDF
    In Europa, più di 700'000 interventi di artroplastica d’anca vengono effettuati annualmente. Il tasso di fallimento della chirurgia è del 2-8 % (a 10 anni). Di questo, più del 50% è dovuto alla mobilizzazione asettica della componente acetabolare (più che ad un fallimento legato alla componente femorale). Lo scopo centrale di questo progetto di tesi è quello di creare un pilot-test per la valutazione in vitro della stabilità primaria di una componente acetabolare commerciale, impiantata in una emipelvi sintetica (senza cemento, attraverso la procedura chirurgica press-fit). La valutazione dei micromovimenti prevede un approccio multiplo, costituito dall’utilizzo della Digital Image Correlation (DIC) e di sensori lineari di spostamento. Per adeguare e migliorare le prestazioni dei due strumenti di misura, lo studio prevede: (1.a) l’ottimizzazione delle misure ottenute dalla correlazione di immagini, (1.b) creare ed effettuare la procedura di calibrazione interna dei sensori di spostamento e l’ottimizzazione delle misure ottenute dai sensori stessi come monitor dell’intero pilot-test. La seconda parte del lavoro si prone di implementare una metodologia affidabile per il calcolo delle roto-traslazioni relative tra coppa e osso. La creazione di un algoritmo dedicato, prevede, quindi, di valutare: (2.a) la migrazione permanente e (2.b) i micromovimenti inducibili dai picchi di carico.L’utilizzo della correlazione di immagini è risultato un gran punto di forza dello studio. Grazie al potere della DIC nell’elaborare spostamenti e deformazioni a tutto campo, senza contatto e in stereofotogrammetria, per la prima volta è stato possibile ottenere informazioni 3D del vettore migrazione della coppa. Inoltre, creando una procedura ottimizzata dell’allineamento del provino sotto la macchina, si sono potute riferire tutte le misure ottenute dal pilot-test, all’Aneterior Pelvic Plane (sistema di riferimento di rilevanza clinica)

    Novel Research about Biomechanics and Biomaterials Used in Hip, Knee and Related Joints

    Get PDF
    Joint replacement is a very successful medical treatment. However, the survivorship of hip, knee, shoulder, and other implants is limited. The degradation of materials and the immune response against degradation products or an altered tissue loading condition as well as infections remain key factors of their failure. Current research in biomechanics and biomaterials is trying to overcome these existing limitations. This includes new implant designs and materials, bearings concepts and tribology, kinematical concepts, surgical techniques, and anti-inflammatory and infection prevention strategies. A careful evaluation of new materials and concepts is required in order to fully assess the strengths and weaknesses and to improve the quality and outcomes of joint replacements. Therefore, extensive research and clinical trials are essential. The main aspects that are addressed in this Special Issue are related to new material, design and manufacturing considerations of implants, implant wear and its potential clinical consequence, implant fixation, infection-related material aspects, and taper-related research topics. This Special Issue gives an overview of the ongoing research in those fields. The contributions were solicited from researchers working in the fields of biomechanics, biomaterials, and bio- and tissue-engineering

    Spline projection-based volume-to-image registration

    Get PDF
    This thesis focuses on the rigid-body registration of a three-dimensional model of an object to a set of its two-dimensional projections. The main contribution is the development of two registration algorithms that use a continuous model of the volume based on splines, either in the space domain or in the frequency domain. This allows for a well-defined gradient of the dissimilarity measure, which is a necessary condition for efficient and accurate registration. The first part of the thesis contains a review of the literature on volume-to- image registration. Then, we discuss data interpolation in the space domain and in the frequency domain. The basic concepts of our registration strategy are given in the second part of the thesis. We present a novel one-step approach for fast ray casting to simulate space-based volume projections. We also discuss the use of the central-slice theorem to simulate frequency-based volume projections. Then, we consider the question of the registration robustness. To improve the robustness of the space-based approach, we apply a multiresolution optimization strategy where spline-based data pyramids are processed in coarse-to-fine fashion, which improves speed as well. To improve the robustness of the frequency-based registration, we apply a coarse-to-fine strategy that involves weights in the frequency domain. In the third part, we apply our space-based algorithm to computer-assisted orthopedic surgery while adapting it to the perspective projection model. We show that the registration accuracy achieved using the orthopedic data is consistent with the current standards. Then, we apply our frequency-based registration to three-dimensional electron-microscopy application. We show that our algorithm can be used to obtain a refined solution with respect to currently available algorithms. The novelty of our approach is in dealing with a continuous space of geometric parameters, contrary to the standard methods which deal with quantized parameters. We conclude that our continuous parameter space leads to better registration accuracy. Last, we compare the performance of the frequency-based algorithm with that of the space-based algorithm in the context of electron microscopy. With these data, we observe that frequency-based registration algorithm outperforms the space-based one, which we attribute to the suitability of interpolation in the frequency domain when dealing with strictly space-limited data

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems
    corecore