16 research outputs found

    IMPLANTABLE NEURAL DEVICES FOR REGENERATIVE NEURAL AXON REGENERATION AND INJURY MONITORING OF SPINAL CORD

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 2. ์ „๊ตญ์ง„.์ค‘์ถ”์‹ ๊ฒฝ๊ณ„(CNS)์— ์†ํ•˜๋Š” ์ฒ™์ˆ˜ ์‹ ๊ฒฝ์ด ์†์ƒ์„ ๋ฐ›์œผ๋ฉด ๊ฐ๊ฐ ๋ฐ ์šด๋™ ๊ธฐ๋Šฅ์˜ ์˜๊ตฌ์  ์†์‹ค์ด ๋ฐœ์ƒํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์ฒ™์ˆ˜์˜ ๊ธฐ๋Šฅ ํšŒ๋ณต์„ ์œ„ํ•œ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ƒ์ฒด์ ํ•ฉ์„ฑ ์Šค์บํด๋“œ ๋ฐ ์žฌ์ƒ์„ ๋•๋Š” ์•ฝ๋ฌผ์„ ์ด์šฉํ•œ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๊ณ , ๋™๋ฌผ ๋ชจ๋ธ์„ ํ†ตํ•ด์„œ ์ƒ๋‹นํžˆ ๊ธ์ •์ ์ธ ์žฌ์ƒํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€์ง€๋งŒ, ์•„์ง๊นŒ์ง€๋Š” ๊ทธ ํšจ๊ณผ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๊ทธ ๋Œ€์•ˆ์œผ๋กœ์จ ์ธ๊ณต ๋ณด์ฒ  ์žฅ์น˜์˜ ์‹ ๊ฒฝ ์ธํ„ฐํŽ˜์ด์Šค ์†Œ์ž์˜ ๊ฐœ๋…์ด ์ œ์•ˆ๋˜์–ด ์—ฐ๊ตฌ๋˜์–ด ์™”์œผ๋‚˜, ์—ฌ์ „ํžˆ ์†์ƒ๋œ ์ฒ™์ˆ˜๋กœ๋ถ€ํ„ฐ์˜ ์‹ ๊ฒฝ ์‹ ํ˜ธ ํš๋“์€ ์–ด๋ ค์šด ๋ฌธ์ œ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š”, ์žฌ์ƒ์ ์ธ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์†์ƒ๋œ ์ฒ™์ˆ˜ ์‹ ๊ฒฝ์œผ๋กœ๋ถ€ํ„ฐ ์‹ ๊ฒฝ ์‹ ํ˜ธ๋ฅผ ์ง์ ‘์ ์œผ๋กœ ํš๋“ํ•  ์ˆ˜ ์žˆ๋Š” ์ด์‹ํ˜• ์‹ ๊ฒฝ ์†Œ์ž๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‹ ํ˜ธ ํš๋“ ์‹œ์— ์—ผ์ฆ ๋ฐ˜์‘์— ์˜ํ•ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ถ€์ •์ ์ธ ํšจ๊ณผ๋ฅผ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•ด, ๊ทผ๋ž˜์— ๋“ค์–ด ์ ์ฐจ ํ•ญ์—ผ์ฆ ํšจ๊ณผ๊ฐ€ ๋ฐํ˜€์ง€๊ณ  ์žˆ๋Š” ๊ทธ๋ ๋ฆฐ(ghrelin)์„ ์ˆ˜ํ™”์ ค ์Šค์บํด๋“œ๋ฅผ ํ†ตํ•ด ์‹ ๊ฒฝ์†Œ์ž์— ์ ์šฉํ•˜์˜€๋‹ค. 10nM ๋†๋„์˜ ์•„๊ฐ€๋กœ์ฆˆ(agarose) ์Šค์บํด๋“œ๋ฅผ ์ „์ž„์ƒ ์ด์‹ ์‹คํ—˜์„ ํ†ตํ•ด ์ด์‹ํ•˜์—ฌ ์žฌ์ƒ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•ด ๋ณธ ๊ฒฐ๊ณผ ๋ ›(rat)์˜ ์šด๋™ ๊ธฐ๋Šฅ์— ํ†ต๊ณ„ํ•™์ ์œผ๋กœ ์˜๋ฏธ ์žˆ๋Š” ํšŒ๋ณต์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ถ”๊ฐ€๋กœ, ์ฒ™์ˆ˜์˜ ์†์ƒ ์ˆ˜์ค€์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•  ์ˆ˜ ์žˆ๋Š” ์ด์‹ํ˜• ์‹ ๊ฒฝ ์„ผ์„œ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ์„ผ์„œ๋Š” ์‹ ๊ฒฝ ๊ต์ƒํ”์˜ ์ฃผ์š” ๋ฌผ์งˆ๋กœ์จ ์‹ ๊ฒฝ์˜ ์žฌ์ƒ์„ ์–ต์ œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋œ CSPG (chondroitin sulfate proteoglycan)์˜ ์–‘์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆํ•œ ์„ผ์„œ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ 1~20ฮผg/ml ๋†๋„ ๋ฒ”์œ„์˜ CSPG์˜ ์–‘์„ ์„ผ์„œ๋กœ ์ธก์ •ํ•ด ๋ณด์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์‹ ๊ฒฝ์˜ ์„ฑ์žฅ์„ ์–ต์ œํ•˜๋Š” ์ˆ˜์ค€์ธ 10ฮผg/ml ๋†๋„์˜ CSPG๋ฅผ ์ถฉ๋ถ„ํžˆ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์—ฌ์„ฏ ๊ฐœ์˜ ์‹œ๋ธŒํ˜• ์‹ ๊ฒฝ ์ „๊ทน์„ ๊ฐ€์ง„ ํด๋ฆฌ์ด๋ฏธ๋“œ์— ๊ธฐ๋ฐ˜ํ•œ ์—ฐ์„ฑ ์‹ ๊ฒฝ ์†Œ์ž๋ฅผ MEMS ๊ณต์ •์„ ํ†ตํ•ด์„œ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ œ์ž‘ํ•œ ์†Œ์ž์˜ ์ „๊ธฐํ™”ํ•™์  ์ž„ํ”ผ๋˜์Šค๋ฅผ ์‚ผ์ „๊ทน๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ธก์ •ํ•˜์˜€์œผ๋ฉฐ, 1kHz์—์„œ 17.9kฮฉ์˜ ๋‚ฎ์€ ์ž„ํ”ผ๋˜์Šค ๊ฐ’์„ ์–ป์–ด ์‹ ๊ฒฝ ์‹ ํ˜ธ์˜ ์ธก์ •์— ๋ฌธ์ œ๊ฐ€ ์—†์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์†Œ์ž์˜ ๋ชจ๋“  ์ „๊ทน์€ ์‚ด์•„ ์›€์ง์ด๋Š” ์ฅ์˜ ๋ชธ์— ๋‹จ๋‹จํžˆ ๊ณ ์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ํŠน๋ณ„ํžˆ ๊ณ ์•ˆ๋œ ์ธํ„ฐํŽ˜์ด์Šค ๋ณด๋“œ์— ์—ฐ๊ฒฐ๋˜์–ด, ์—ฐ์„ฑ ๊ธฐํŒ ์ปค๋„ฅํ„ฐ๋ฅผ ํ†ตํ•ด ์™ธ๋ถ€๋กœ ์—ฐ๊ฒฐ๋˜๋„๋ก ํ•˜์˜€๋‹ค. ์†Œ์ž๊ฐ€ ์ด์‹๋œ ์ฅ๋Š” ํ†ต์ƒ์ ์ธ ํ›„๊ด€๋ฆฌ๋ฅผ ๋ฐ›์•˜์œผ๋ฉฐ 1๊ฐœ์›” ์ด์ƒ ์ƒ์กดํ•˜์˜€๋‹ค. ์‹ ๊ฒฝ ์‹ ํ˜ธ ์ธก์ •์„ ์œ„ํ•œ ์ „์ž„์ƒ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ ›์„ ๋งˆ์ทจํ•œ ํ›„ ์ด์‹ํ•œ ์‹ ๊ฒฝ ์†Œ์ž์˜ ์ธํ„ฐํŽ˜์ด์Šค๋ณด๋“œ์— ์‹ ํ˜ธ ์ธก์ • ์žฅ๋น„์˜ ์ปค๋„ฅํ„ฐ๋ฅผ ์—ฐ๊ฒฐํ•˜์˜€๋‹ค. ๋ถ€๋“œ๋Ÿฌ์šด ์†”์„ ์ด์šฉํ•˜์—ฌ ์ฅ์˜ ํ•˜๋ถ€ ๋‹ค๋ฆฌ๋ฅผ ์ž๊ทนํ•จ์œผ๋กœ์จ ๊ฐ•์ œ์ž‘์ธ ์‹ ๊ฒฝ ์‹ ํ˜ธ๋ฅผ ํ˜•์„ฑํ•˜์˜€๊ณ , ์ด ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด 200~400ฮผV ํฌ๊ธฐ์˜ ์‹ ๊ฒฝ ์‹ ํ˜ธ๋ฅผ ํš๋“ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์˜ ๋ถ„์„์— ๋”ฐ๋ฅด๋ฉด, ํ”ผํฌ ์ฃผํŒŒ์ˆ˜์˜ ๋ฒ”์œ„๋Š” 500Hz์—์„œ 1kHz์˜ ๋ฒ”์œ„์—์„œ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ž๊ทน์— ์˜ํ•œ ์‹ ๊ฒฝ ์‹ ํ˜ธ์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•œ ์‹ ๊ฒฝ ์†Œ์ž๋Š” ์ถ”ํ›„ ์ฒ™์ˆ˜ ์†์ƒ ์žฅ์• ์ธ์„ ์œ„ํ•œ ์ธ๊ณต ๋ณด์ฒ ์˜ ์‹ ๊ฒฝ ์ธํ„ฐํŽ˜์ด์Šค๋กœ ํ™œ์šฉ ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ ๋œ๋‹ค.์š”์•ฝ๋ฌธ ๋ชฉ์ฐจ ๊ทธ๋ฆผ ๋ชฉ์ฐจ ํ‘œ ๋ชฉ์ฐจ 1. ์„œ๋ก  1.1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1.2. ์กฐ์ง ๊ณตํ•™ ๋ฐ ์‹ ๊ฒฝ ์ „๊ทน ์—ฐ๊ตฌ์˜ ๋™ํ–ฅ 1.2.1. ์กฐ์ง ๊ณตํ•™ ์—ฐ๊ตฌ ๋™ํ–ฅ 1.2.2. ์‹ ๊ฒฝ ์ „๊ทน ์—ฐ๊ตฌ์˜ ๋™ํ–ฅ 1.3. ์—ฐ๊ตฌ์˜ ๋ชฉ์  1.4. ์—ฐ๊ตฌ์˜ ์ˆ˜์›”์„ฑ 1.5. ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 2. ์ฒ™์ˆ˜ ์‹ ๊ฒฝ ์žฌ์ƒ์šฉ ์Šค์บํด๋“œ 2.1. ์Šค์บํด๋“œ์˜ ๋””์ž์ธ 2.1.1. ์Šค์บํด๋“œ ์žฌ์งˆ์˜ ์„ ํƒ 2.1.2. ์‹ ๊ฒฝ ์žฌ์ƒ ์•ฝ๋ฌผ์˜ ์„ ํƒ 2.1.3. ์Šค์บํด๋“œ์˜ ๊ตฌ์กฐ ์„ค๊ณ„ ๋ฐ ์ œ์ž‘ 2.2. ์ „์ž„์ƒ ์ด์‹ ์ˆ˜์ˆ  2.3. ๊ธฐ๋Šฅ ํšŒ๋ณต ํ…Œ์ŠคํŠธ 2.4. ๊ธฐ๋Šฅ ํšŒ๋ณต์˜ ์˜๋ฏธ 2.5. ์กฐ์งํ•™์  ๊ฒ€์ฆ 2.5.1. ์กฐ์ง ์ฒ˜๋ฆฌ ๊ณผ์ • 2.5.2. ์กฐ์ง ์—ผ์ƒ‰ ๊ฒฐ๊ณผ 2.6. ์Šค์บํด๋“œ ์ „์ž„์ƒ ์ด์‹ ์‹คํ—˜์˜ ๊ฒฐ๋ก  3. ์ฒ™์ˆ˜ ์†์ƒ ํ‰๊ฐ€์šฉ ์ด์‹ํ˜• ์‹ ๊ฒฝ ์†Œ์ž 3.1. ์ฒ™์ˆ˜ ์†์ƒ ํ‰๊ฐ€ ์„ผ์„œ์˜ ๊ฐœ๋… ๋ฐ ์›๋ฆฌ 3.1.1. Chondroitin Sulfate Proteoglycan (CSPG) 3.1.2. CSPG ์„ผ์„œ์˜ ๊ฐœ๋… 3.1.3. CSPG ์„ผ์„œ์˜ ์›๋ฆฌ 3.2. ๋‚˜๋…ธ์™€์ด์–ด ํŠน์„ฑ ํ‰๊ฐ€ 3.2.1. ๋‚˜๋…ธ ์™€์ด์–ด์˜ ์ข…๋ฅ˜ 3.2.2. ๋‚˜๋…ธ์™€์ด์–ด ๊ทธ๋ฌผ๋ง์˜ ์ œ์ž‘ 3.2.3. ๋‚˜๋…ธ์™€์ด์–ด ์ž„ํ”ผ๋˜์Šค ํŠน์„ฑ ํ‰๊ฐ€ 3.2.4. ๋‚˜๋…ธ์™€์ด์–ด ๋…์„ฑ ํ‰๊ฐ€ 3.2.5. ๋‚˜๋…ธ์™€์ด์–ด ์„ธํฌ ํ˜•์ƒ ํ‰๊ฐ€ 3.2.6. ๋‚˜๋…ธ์™€์ด์–ด ํŠน์„ฑ ์‹คํ—˜ ๊ฒฐ๋ก  3.3. CSPG ์„ผ์„œ์˜ ์ œ์ž‘ 3.3.1. CSPG ์„ผ์„œ์˜ ์—ฐ์„ฑ ๊ธฐํŒ ์„ ํƒ ๋ฐ ๊ณต์ • ์กฐ๊ฑด 3.3.2. Polyimide์˜ ๊ธˆ์† ๋ฐฐ์„ ์„ ์œ„ํ•œ ์ ‘์ฐฉ๋ ฅ ํ–ฅ์ƒ 3.3.3. Polyimide ์‹๊ฐ ์กฐ๊ฑด 3.3.4. CSPG ์„ผ์„œ์˜ ์ œ์ž‘ ๊ณต์ • 3.4. CSPG ์„ผ์„œ ์ธก์ • 4. ์ฒ™์ˆ˜์‹ ๊ฒฝ ์‹ ํ˜ธ ์ธก์ •์šฉ ์ด์‹ํ˜• ์‹ ๊ฒฝ ์†Œ์ž 4.1. ์‹ ํ˜ธ ์ธก์ •์šฉ ์‹ ๊ฒฝ ์†Œ์ž์˜ ์„ค๊ณ„ 4.1.1. ์‹ ํ˜ธ ์ธก์ •์šฉ ์‹ ๊ฒฝ ์†Œ์ž์˜ ๊ฐœ๋… ๋ฐ ์‹ ํ˜ธ ์ธก์ • ์›๋ฆฌ 4.1.2. ์‹œ๋ธŒํ˜•ํƒœ ์‹ ๊ฒฝ ์ „๊ทน์˜ ์„ค๊ณ„ 4.1.3. ์‹œ๋ธŒํ˜•ํƒœ ์‹ ๊ฒฝ ์ „๊ทน์˜ ๊ณต์ • ์„ค๊ณ„ 4.2. ์Šค์บํด๋“œ์™€ ์‹œ๋ธŒํ˜•ํƒœ ์‹ ๊ฒฝ ์ „๊ทน์˜ ์ผ์ฒดํ™” 4.3. ์‹ ๊ฒฝ ์†Œ์ž ์ด์‹ ์ˆ˜์ˆ  4.3.1. ์‹ ๊ฒฝ ์†Œ์ž์˜ ์ฒ™์ˆ˜ ๊ณ ์ •๋ฒ• 4.3.2. ์‹ ๊ฒฝ ์†Œ์ž ์ธํ„ฐํŽ˜์ด์Šค ๋ณด๋“œ ๊ณ ์ •๋ฒ• 4.4. ์‹ ๊ฒฝ์†Œ์ž์˜ ์‹ ๊ฒฝ ์‹ ํ˜ธ ์ธก์ • 4.4.1. ์‹ ๊ฒฝ์†Œ์ž์˜ ์ž„ํ”ผ๋˜์Šค ์ธก์ • 4.4.2. ์‹ ๊ฒฝ ์‹ ํ˜ธ์˜ ์ธก์ • ๋ฐฉ๋ฒ• 4.5. ์‹ ๊ฒฝ ์‹ ํ˜ธ ์ธก์ • ๊ฒฐ๊ณผ ๋ถ„์„ 4.5.1. ์ธก์ •๋œ ์‹ ๊ฒฝ ์‹ ํ˜ธ 4.5.2. ์‹ ๊ฒฝ ์‹ ํ˜ธ์˜ ์ฃผํŒŒ์ˆ˜ ๋ถ„์„ 5. ๊ฒฐ๋ก  5.1. ๊ฒฐ๋ก  5.2. ์ถ”ํ›„ ๊ณผ์ œ ABSTRACTDocto

    The degradation of glial scar and enhancement of chronic intracortical recording electrode performance through the local delivery of dexamethasone and chondroitinase

    Get PDF
    The ability of conducting polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) to store a drug as a dopant and release it following electrical stimulus make them an intriguing coating possibility for intracortical electrodes, along with their ability to reduce electrode impedance. The mechanism allows for the release of an assortment of useful agents, including anti-inflammatory drugs and neuromodulatory chemicals. We evaluated the release capabilities of a multi-walled carbon nanotube (MWCNT)-doped PEDOT coating incorporating the anti-inflammatory steroid dexamethasone in vitro using sputtered-gold macroelectrodes, and then applied the coating to half of the electrodes within 16-shank platinum/iridium floating microelectrode arrays for chronic in vivo evaluation in rat visual cortex. Impedance measurement, neurophysiological recording, and cyclic voltammetric release stimulus (-0.9 V to 0.6 V, 1 V/s, 20 cycles) was performed daily to all channels. On the 11th day, histology was performed to quantitatively characterize inflammatory tissue response using OX42 (microglia) and GFAP (astroglia). Equivalent circuit analysis was performed to assist the interpretation of impedance data. Our results indicated that the MWCNT/PEDOT-coated gold macroelectrodes released double the amount of dexamethasone using passive release followed by CV stimulation (10 sets of 20 cycles) compared to passive release alone. Coatings applied to Pt/Ir microelectrodes reduced 1 kHz impedance in PBS by approximately 38%. Coated probes in vivo exhibited a significant decrease in 1 kHz impedance for the initial three days of implantation followed by an increase, between days 4 and 7, to values equivalent to those exhibited by uncoated probes. Neurophysiological recording performance of coated and uncoated probes remained equivalent for the duration of the experiment, in terms of signal-to-noise ratio and noise amplitude. Histology revealed no significant difference in tissue inflammatory response to coated and uncoated electrodes. Explant imaging revealed the presence of a membranous film enveloping coated electrodes, and equivalent circuit analysis suggested that the day 4-7 increase in 1 kHz impedance of coated electrodes was due to a decrease in effective surface area of the coatings as well as the core electrodes. Additional work was also performed developing a model for the in vivo microinjection of the enzyme Chondroitinase ABC into tissue surrounding implanted microelectrodes

    Structures based on semi-degradable biomaterials for neural regeneration in the central nervous system

    Full text link
    Se pretende obtener un material semibiodegradable basado en รกcido hialurรณnico quรญmicamente enlazado a cadenas de polรญmeros acrรญlicos. Los hidrogeles de รกcido hialurรณnico presentan en general buenas caracterรญsticas para su utilizaciรณn en regeneraciรณn del sistema nervioso central: es biodegradable, es un componente importante del tejido neural, sus propiedades mecรกnicas son semejantes a las del tejido cerebral, promueve la formaciรณn de nuevos capilares (angiogรฉnesis), y limita la inflamaciรณn. Con este nuevo material se pretende mejorar el excesivo grado de hinchado en medio fisiolรณgico, su rรกpida degradaciรณn, mejorar la adhesiรณn celular, ademรกs la matriz permanente de las cadenas acrรญlicas pueden actuar como un soporte permanente durante el proceso regenerativo sin que se produzca una pรฉrdida brusca de propiedades mecรกnicas y estructurales. El trabajo consiste en caracterizar este nuevo material asรญ como los productos intermedios necesarios para su obtenciรณn final, comparรกndolo con las propiedades de un hidrogel de รกcido hialurรณnico sin incorporar cadenas acrรญlicas. Los estudios celulares se llevaran a cabo in vitro, como fase preliminar para futuros implantes en el cortex cerebral, estudiando la capacidad de diferenciaciรณn de precursores neurales y de generaciรณn de nuevos capilares con el fenotipo tรญpico de la barrera hematoencefรกlica, mediante el estudio de cocultivos de precursores neurales y cรฉlulas endoteliales.Perez Garnes, M. (2015). Structures based on semi-degradable biomaterials for neural regeneration in the central nervous system [Tesis doctoral no publicada]. Universitat Politรจcnica de Valรจncia. https://doi.org/10.4995/Thesis/10251/4879

    Developing a new generation of neuro-prosthetic interfaces: structure-function correlates of viable retina-CNT biohybrids

    Get PDF
    PhD ThesisOne of the many challenges in the development of neural prosthetic devices is the choice of electrode material. Electrodes must be biocompatible, and at the same time, they must be able to sustain repetitive current injections in a highly corrosive physiological environment. We investigated the suitability of carbon nanotube (CNT) electrodes for retinal prosthetics by studying prolonged exposure to retinal tissue and repetitive electrical stimulation of retinal ganglion cells (RGCs). Experiments were performed on retinal wholemounts isolated from the Cone rod homeobox (CRX) knockout mouse, a model of Leber congenital amaurosis. Retinas were interfaced at the vitreo-retinal juncture with CNT assemblies and maintained in physiological conditions for up to three days to investigate any anatomical (immunohistochemistry and electron microscopy) and electrophysiological changes (multielectrode array stimulation and recordings; electrodes were made of CNTs or commercial titanium nitride). Anatomical characterisation of the inner retina, including RGCs, astrocytes and Mรผller cells as well as cellular matrix and inner retinal vasculature, provide strong evidence of a gradual remodelling of the retina to incorporate CNT assemblies, with very little indication of an immune response. Prolonged electrophysiological recordings, performed over the course of three days, demonstrate a gradual increase in signal amplitudes, lowering of stimulation thresholds and an increase in cellular recruitment for RGCs interfaced with CNT electrodes, but not with titanium nitride electrodes. These results provide for the first time electrophysiological, ultrastructural and cellular evidence of the time-dependent formation of strong and viable bio-hybrids between the RGC layer and CNT arrays in intact retinas. We conclude that CNTs are a promising material for inclusion in retinal prosthetic devices

    Towards new generation of neuro-implantable devices : engineering neuron/carbon nanotubes integrated functional units

    Get PDF
    2008/2009Le nanotecnologie sono un campo delle scienze che utilizza materiali e dispositivi ingegnerizzati aventi la piรน piccola organizzazione funzionale a livello di dimensioni nanometriche. Questo implica che nanodispositivi e nanomateriali possano interagire con i sistemi biologici a livello molecolare con un elevato grado di specificitร . ร‰ largamente accettato che lโ€™applicazione delle nanotecnologie nellโ€™ambito delle neuroscienze abbia un forte potenziale (Silva, 2006). In questo contesto, i nanotubi di carbonio (CNT), unโ€™innovativa forma di carbonio composta da strutture tubulari di grafite dalle dimensioni nanometriche dotate di buone proprietร  di conduzione elettrica, si sono dimostrati promettenti candidati per sviluppare la tecnologia di dispositivi impiantabili in ambito biomedico. Diversi studi hanno dimostrato la biocompatibilitร  dei substrati di CNT per i neuroni in termini di adesione, crescita e differenziamento cellulare (riassunti in Sucapane et al., 2009). Al fine di aumentare la nostra conoscenza riguardo alle interazioni presenti in sistemi ibridi formati da CNT e neuroni, abbiamo caratterizzato lโ€™attivitร  di reti neuronali cresciuti su supporti di CNT attraverso la tecnica del patch clamp. Il nostro gruppo ha riportato che circuti neuronali cresciuti in vitro su substrati di CNT presentano unโ€™aumentata attivitร  sinaptica spontanea rispetto al controllo a fronte di comparabili proprietร  base (proprietร  passive di membrana, morfologia e densitร  dei neuroni) delle colture nelle due condizioni di crescita (Lovat et al., 2005). Si รจ quindi ipotizzato che tale aumentata attivitร  spontanea potesse originare da una modificazione nel modo in cui i singoli neuroni generano il segnale elettrico. A tal fine, si sono monitorate variazioni nelle proprietร  elettrogeniche di singoli neuroni, utilizzando un protocollo standard per caratterizzare lโ€™integrazione di potenziali dโ€™azione retropropaganti nei dendriti (Larkum et al., 1999). In configurazione current clamp, attraverso brevi iniezioni di corrente nel soma della cellula, abbiamo indotto una serie di regolari potenziali dโ€™azione (PA) a varie frequenze nel neurone sotto registrazione, quindi abbiamo studiato la presenza di unโ€™addizionale depolarizzazione somatica dopo lโ€™ultimo PA del treno. Abbiamo osservato che neuroni di controllo mostrano nella maggioranza dei casi una iperpolarizzazione (AHP) del potenziale di membrana dopo lโ€™ultimo PA del treno, mentre una depolarizzazione (ADP) รจ presente solo in una piccola quota di casi. In presenza di CNT, invece, lโ€™ADP risulta essere lโ€™evento predominante. Lโ€™ADP รจ inoltre abolita dallโ€™applicazione di CoCl2, un bloccante non specifico dei canali calcio voltaggio dipendenti. Per di piรน, lโ€™area dellโ€™ADP puรฒ essere diminuita dallโ€™applicazione di nifedipina (10 ฮผM) e lโ€™ulteriore coapplicazione di NiCl2 (50 ฮผM) elimina totalmente lโ€™ADP, suggerendo che sia i canali calcio voltaggio dipendenti ad alta soglia di attivazione, sia quelli a bassa soglia, siano coinvolti in questo processo (Cellot et al., 2009). Attraverso la microscopia elettronica a trasmissione (TEM) e, piรน recentemente, mediante quella a scansione (SEM) รจ stata messa in evidenza la presenza di discontinui punti di stretto contatto tra CNT e membrane neuronali: la nostra ipotesi รจ che tali strutture ibride siano in grado di favorire la retropropagazione dei PA nei dendriti distali. La maggiore eccitabilitร  a livello del singolo neurone, inoltre, potrebbe essere responsabile dellโ€™incremento di attivitร  spontanea della rete neuronale. Abbiamo quindi ulteriormente caratterizzato lโ€™attivitร  della rete neuronale attraverso registrazioni da coppie di neuroni, dove il neurone presinaptico veniva stimolato ad avere treni di potenziali dโ€™azione a 20 Hz in configurazione current clamp e simultaneamente il neurone postsinaptico era monitorato in configurazione voltage clamp per vedere la presenza o lโ€™assenza di una risposta sinaptica. I nostri esperimenti indicano che la probabilitร  di trovare connessioni monosinaptiche gabaergiche tra neuroni รจ aumentata in presenza di CNT (56% vs 40% in controllo). Inoltre, รจ stato rilevato un ulteriore effetto dei CNT sulla plasticitร  a breve termine delle sinapsi: nelle condizioni di controllo, treni di potenziali dโ€™azione nella cellula presinaptica evocano nella cellula postsinaptica nel 90% dei casi una chiara depressione nellโ€™ampiezza di consecutivi ePSCs, mentre solo in meno del 10% รจ possibile rilevare una facilitazione. Al contrario, in presenza di CNT, nel 39% delle coppie, il neurone postsinaptico risponde in modo chiaramente facilitativo. Nelle piรน recenti serie di esperimenti, abbiamo voluto indagare piรน approfonditamente lโ€™origine di questa modificazione in termini di plasticitร  sinaptica; a tal fine, abbiamo trattato neuroni in controllo e su CNT con tetrodotossina 1 ยตM per 5 giorni, al fine di bloccare completamente lโ€™attivitร  elettrica della rete neuronale, e abbiamo compiuto delle registrazioni da coppie di neuroni. Mentre la risposta prevalentemente di depressione dei controlli non รจ modificata da tale trattamento, neuroni cresciuti su substrati di cnt in condizioni di blocco dellโ€™attivitร  elettrica non presentano piรน sinapsi con caratteristiche di facilitazione, ma hanno un comportamento simile ai contolli. Questi risultati indicano che la facilitazione รจ una proprietร  tipica di sinapsi attive sviluppatesi in presenza di CNT.XXII Ciclo198

    Progenitor cells in auricular cartilage demonstrate promising cartilage regenerative potential in 3D hydrogel culture

    Get PDF
    The reconstruction of auricular deformities is a very challenging surgical procedure that could benefit from a tissue engineering approach. Nevertheless, a major obstacle is presented by the acquisition of sufficient amounts of autologous cells to create a cartilage construct the size of the human ear. Extensively expanded chondrocytes are unable to retain their phenotype, while bone marrow-derived mesenchymal stromal cells (MSC) show endochondral terminal differentiation by formation of a calcified matrix. The identification of tissue-specific progenitor cells in auricular cartilage, which can be expanded to high numbers without loss of cartilage phenotype, has great prospects for cartilage regeneration of larger constructs. This study investigates the largely unexplored potential of auricular progenitor cells for cartilage tissue engineering in 3D hydrogels

    Brain-Targeted Drug Delivery

    Get PDF
    Brain diseases currently affect one in six people worldwide; they include a wide range of neurological diseases, from Alzheimerโ€™s and Parkinsonโ€™s diseases to epilepsy, brain injuries, brain cancer, neuroinfections, and strokes. The treatment of these diseases is complex and limited due to the presence of the bloodโ€“brain barrier (BBB), which covers the entirety of the brain. The BBB not only has the function of protecting the brain from harmful substances; it is also a metabolic barrier and a transport regulator of nutrients/serum factors/neurotoxins. Knowing these characteristics when it comes to the treatment of brain diseases makes it easier to understand the lack of efficacy of therapeutic drugs, resulting from the innate resistance of the BBB to permeation. To overcome this limitation, drug delivery systems based on nanotechnology/microtechnology have been developed. Brain-targeted drug delivery enables targeted therapy with a higher therapeutic efficacy and fewer side effects because it targets moieties present in the drug delivery systems
    corecore