13,057 research outputs found

    The wall shear stress produced by the normal impingement of a jet on a flat surface

    Get PDF
    A method for the theoretical determination of the wall shear stress under impinging jets of various congurations is presented. Axisymmetric and two-dimensional incompressible jets of a wide range of Reynolds numbers and jet heights are considered. Theoretical predictions from this approach are compared with available wall shear stress measurements. These data are critically evaluated based on the method of measurement and its applicability to the boundary layer under consideration. It was found that impingement-region wall shear stress measurements using the electrochemical method in submerged impinging liquid jets provide the greatest accuracy of any indirect method. A unique wall shear stress measurement technique, based on observing the removal of monosized spheres from well-characterized surfaces, was used to conrm the impinging jet analysis presented for gas jets. The technique was also used to determine an empirical relation describing the rise in wall shear stress due to compressibility eects in impinging high-velocity jets

    Statistics of fully turbulent impinging jets

    Get PDF
    Direct numerical simulations of sub- and supersonic impinging jets with Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical properties. The influence of the parameters Mach number, Reynolds number and ambient temperature on the mean velocity and temperature fields are studied. For the compressible subsonic cold impinging jets into a heated environment, different Reynolds analogies are assesses. It is shown, that the (original) Reynolds analogy as well as the Chilton Colburn analogy are in good agreement with the DNS data outside the impinging area. The generalised Reynolds analogy (GRA) and the Crocco-Busemann relation are not suited for the estimation of the mean temperature field based on the mean velocity field of impinging jets. Furthermore, the prediction of fluctuating temperatures according to the GRA fails. On the contrary, the linear relation between thermodynamic fluctuations of entropy, density and temperature as suggested by Lechner et al. (2001) can be confirmed for the entire wall jet. The turbulent heat flux and Reynolds stress tensor are analysed and brought into coherence with the primary and secondary ring vortices of the wall jet. Budget terms of the Reynolds stress tensor are given as data base for the improvement of turbulence models

    Micro heat exchanger by using MEMS impinging jets

    Get PDF
    A micro impinging-jet heat exchanger is presented here. Heat transfer is studied for single jet, slot arrays and jet arrays. In order to facilitate micro heat transfer measurements with these devices, a MEMS sensor chip, which has an 8 x 8 temperature-sensor array on one side, and an integrated heater on the other side has been designed and fabricated. This sensor chip allows 2-D surface temperature measurement with various jets impinging on it. It is found that micro impinging jets can be highly efficient when compared to existing macro impinging-jet microelectronics packages such as IBM 4381. For example, using a single nozzle jet (500-μm diameter driven by 5 psig pressure), the sensor chip (2 x 2 cm^2) temperature can be cooled down from 70 to 33°C. The cooling becomes more efficient when nozzle arrays (4x5 over 1 cm^2 area) are used under the same driving pressure. Interestingly, although higher driving pressure gives better cooling (lower surface temperature), the cooling efficiency, defined as h/0.5pv^2, is actually higher for lower driving pressure

    Recirculation effects produced by a pair of heated jets impinging on a ground plane

    Get PDF
    Exhaust recirculation effects produced by two heated jets impinging on ground plan

    Analysis of impingement heat transfer for two parallel liquid-metal slot jets

    Get PDF
    An analytical method is developed for determining heat transfer by impinging liquid-metal slot jets. The method involves mapping the jet flow region, which is bounded by free streamlines, into a potential plane where it becomes a uniform flow in a channel of constant width. The energy equation is transformed into potential plane coordinates and is solved in the channel flow region. Conformal mapping is then used to transform the solution back into the physical plane and obtain the desired heat-transfer characteristics. The analysis given here determines the heat-transfer characteristics for two parallel liquid-metal slot jets impinging normally against a uniformly heated flat plate. The liquid-metal assumptions are made that the jets are inviscid and that molecular conduction is dominating heat diffusion. Wall temperature distributions along the heated plate are obtained as a function of spacing between the jets and the jet Peclet number

    Annular impinging jet with recirculation zone expanded by acoustic excitation

    Get PDF
    Flow visualization and mass transfer (naphthalene sublimation) experiments were performed on acoustically excited annular air jet with diameter ratio Di/Do=0.95. Two different regimes of the time-mean flow field were found, differing in the size of the central recirculation zone, with either the single stagnation point or the stagnation circle. The switching between the two regimes is accomplished by acoustic excitation, under identical geometry conditions. An effective stabilization of the large recirculation zone, as well as remarkable augmentation of average heat/mass transfer by 23%, have been achieved at the excitation Strouhal number Sh=0.94

    Impinging Jet Resonant Modes at Mach 1.5

    Full text link
    High speed impinging jets have been the focus of several studies owing to their practical application and resonance dominated flow-field. The current study focuses on the identification and visualization of the resonant modes at certain critical impingement heights for a Mach 1.5 normally impinging jet. These modes are associated with high amplitude, discrete peaks in the power spectra and can be identified as having either axisymmetric or azimuthal modes. Their visualization is accomplished through phase-locked Schlieren imaging and fast-response pressure sensitive paint (PC-PSP) applied to the ground plane.Comment: videos and figures are attache