2,254 research outputs found

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    Antenna integration for wireless and sensing applications

    Get PDF
    As integrated circuits become smaller in size, antenna design has become the size limiting factor for RF front ends. The size reduction of an antenna is limited due to tradeoffs between its size and its performance. Thus, combining antenna designs with other system components can reutilize parts of the system and significantly reduce its overall size. The biggest challenge is in minimizing the interference between the antenna and other components so that the radiation performance is not compromised. This is especially true for antenna arrays where the radiation pattern is important. Antenna size reduction is also desired for wireless sensors where the devices need to be unnoticeable to the subjects being monitored. In addition to reducing the interference between components, the environmental effect on the antenna needs to be considered based on sensors' deployment. This dissertation focuses on solving the two challenges: 1) designing compact multi-frequency arrays that maintain directive radiation across their operating bands and 2) developing integrated antennas for sensors that are protected against hazardous environmental conditions. The first part of the dissertation addresses various multi-frequency directive antennas arrays that can be used for base stations, aerospace/satellite applications. A cognitive radio base station antenna that maintains a consistent radiation pattern across the operating frequencies is introduced. This is followed by multi-frequency phased array designs that emphasize light-weight and compactness for aerospace applications. The size and weight of the antenna element is reduced by using paper-based electronics and internal cavity structures. The second part of the dissertation addresses antenna designs for sensor systems such as wireless sensor networks and RFID-based sensors. Solar cell integrated antennas for wireless sensor nodes are introduced to overcome the mechanical weakness posed by conventional monopole designs. This can significantly improve the sturdiness of the sensor from environmental hazards. The dissertation also introduces RFID-based strain sensors as a low-cost solution to massive sensor deployments. With an antenna acting as both the sensing device as well as the communication medium, the cost of an RFID sensor is dramatically reduced. Sensors' strain sensitivities are measured and theoretically derived. Their environmental sensitivities are also investigated to calibrate them for real world applications.Ph.D.Committee Chair: Tentzeris, Emmanouil; Committee Member: Akyildiz, Ian; Committee Member: Allen, Mark; Committee Member: Naishadham, Krishna; Committee Member: Peterson, Andrew; Committee Member: Wang, Yan

    Co-design of Reconfigurable and Multifunction Passive RF/Microwave Components

    Get PDF
    In order to meet the market demands, multi-band communication systems that are able to accommodate different wireless technologies to be compatible with different wireless standards should be investigated and realized. Multifunction and multi-band RF front-end components are promising solutions for reducing the size and enhancing the performance of multi-band communication systems. This dissertation focuses on the design and implementation of different multifunction and tunable microwave components for use in multi-standard, flexible transceiver. For frequency-domain duplexing (FDD) communication systems, in which the uplink and downlink channels are carried on different RF frequencies, a diplexer is an essential component to separate the transmitting and receiving signals from the antenna. Electrically tunable diplexers simplify the architecture of reconfigurable RF-front end. Moreover, in modern communication systems, the crowding of the spectrum and the scaling of electronics can result in higher common-mode interference and even-order non-linearity issues. In this dissertation, three tunable compact SIW-based dual-mode diplexers, with various SE (single-ended) and BAL (balanced) capabilities, are introduced for the first time. The dual-mode operation results in a dependent tuning between the two ports. The presented designs are for SE-SE, SE-BAL, and BAL-BAL. However, based on the presented design concepts, any combination of the diplexer ports can be achieved in terms of supporting the balanced and single-ended system interface. The fabricated diplexers show low insertion loss, high isolation, good tuning range and high common mode rejection. Tunable bandstop filter (BSF) is one of the essential components in the design of RF front-ends that require wide-band operations. A wide-open front-end leaves the receiver vulnerable to jamming by high-power signals. As a result, this type of front-ends requires dynamic isolation of any interfering signal. Realization of such filters in a balanced configuration, as a second function, is an important step in the realization of full-balanced RF front-ends. Balanced (differential) circuits have many important advantages over unbalanced (single-ended) circuits such as immunity to system noise, reduction of transient noise generation and inherent suppression of even-order nonlinearities. All reported balanced filters are bandpass filters that target wide pass-bands and high common-mode rejection. These filters are necessary for wide-band RF front-ends but, as mentioned above, leave the system open to interferers and jammers. In this dissertation, a new differential coupling structure for evanescent-mode cavity resonators is developed, enabling the design of fully-balanced tunable BSF. The proposed filter is tunable from 1.57-3.18 GHz with 102% tuning range. In addition, over the full range, the measured 10-dB fractional bandwidth ranges from 1-2.4%, and the attenuation level is better than 47 dB. Lastly, Substrate Integrated Waveguide (SIW) evanescent-mode cavity resonators (EVA) are employed in the design of RF couplers, quadrature hybrid and rat-race couplers. These couplers are used in the design of numerous RF front-end components such as power amplifiers, balanced mixers, and antenna array feeding networks. Utilizing such resonators (EVA) in the design allows the couplers to have wide spurious-free range, low power consumption, high power handling capability and both tunability and filtering capabilities. The proposed quadrature hybrid coupler can be tuned starting from 1.32–2.22 GHz with a measured insertion loss range from 1.29 to 0.7 dB. The measured reflection and isolation are better than 12 dB and 17 dB, respectively. Moreover, the coupler has a measured spurious free range of 5.1–3fo (lowest–highest frequency). Regarding rat-race coupler, two designs are introduced. The first design is based on a full-mode cavity while the second one is more compact and based on a half-mode cavity. Both designs show more than 70% tuning range, and the isolation is better than 30 dB

    Study of soft materials, flexible electronics, and machine learning for fully portable and wireless brain-machine interfaces

    Get PDF
    Over 300,000 individuals in the United States are afflicted with some form of limited motor function from brainstem or spinal-cord related injury resulting in quadriplegia or some form of locked-in syndrome. Conventional brain-machine interfaces used to allow for communication or movement require heavy, rigid components, uncomfortable headgear, excessive numbers of electrodes, and bulky electronics with long wires that result in greater data artifacts and generally inadequate performance. Wireless, wearable electroencephalograms, along with dry non-invasive electrodes can be utilized to allow recording of brain activity on a mobile subject to allow for unrestricted movement. Additionally, multilayer microfabricated flexible circuits, when combined with a soft materials platform allows for imperceptible wearable data acquisition electronics for long term recording. This dissertation aims to introduce new electronics and training paradigms for brain-machine interfaces to provide remedies in the form of communication and movement for these individuals. Here, training is optimized by generating a virtual environment from which a subject can achieve immersion using a VR headset in order to train and familiarize with the system. Advances in hardware and implementation of convolutional neural networks allow for rapid classification and low-latency target control. Integration of materials, mechanics, circuit and electrode design results in an optimized brain-machine interface allowing for rehabilitation and overall improved quality of life.Ph.D
    • …
    corecore