285 research outputs found

    Passive UHF RFID Tilt Sensor

    Get PDF
    In this paper we introduce a bio-axis passive wireless UHF RFID tilt sensor for applications such as to increase safety in warehouse environment and damage detection in consumer goods and where long term monitoring of the product is essential without the need to supply power to the sensors. Simulation and prototype testing indicate it is possible to detect and isolate tilting in 3 axes

    Radiation of implanted antenna in the multi-layer spherical model of body tissues

    Get PDF
    Electrical and Telecommunication Engineering is nowadays playing a fundamental role in biomedical research and its applications. Microwave and Antenna Group at EPFL are working resolutely to help in this vital field for society, as it has been unfortunately proven once again during the sanitary crisis caused by the COVID-19 outbreak in the last months. With this final degree thesis, I have tried to make my humble contribution to this broad topic, focusing on the field of Radio Frequency Identification (RFID). To do so, the main objective of this work was to study the frequency splitting phenomenon and verify whether it is plausible to identify a 2mm electrically small passive loop antenna using another active antenna of the same characteristics. It has been found that for close distances with no dielectric boundaries (up to 2.5mm for this configuration), analysing the frequency splitting phenomenon is an effective way to correctly confirm the presence of the passive antenna (or transponder), and it is even possible to determine its distance relative to the active antenna (or reader). When a dielectric environment is added, frequency splitting can be detected as well. However, in this case, the detectable distance range decreases due to the high relative permittivity conditions. These findings lead to a feasible way to implement a low-complexity 1-bit transponder for short-range applications.La Ingeniería Eléctrica y de Telecomunicaciones tiene actualmente un papel fundamental en la investigación biomédica y sus aplicaciones. El Grupo de Microondas y Antenas de la EPFL trabaja decididamente para ayudar en este campo vital para la sociedad, como ha sido lamentablemente demostrado una vez más durante la crisis sanitaria provocada por la pandemia de COVID-19 en los últimos meses. Con esta tesis de fin de grado, he tratado de hacer mi humilde aportación a este amplio tema, centrándome en el campo de la Identificación por Radiofrecuencia (RFID). Para ello, el objetivo principal de este trabajo ha sido estudiar el fenómeno de división frecuencial (conocido en inglés como frequency splitting) y verificar si es posible identificar una antena pasiva eléctricamente pequeña del tipo espira elemental de 2 mm utilizando otra antena activa de las mismas características. Se ha encontrado que para distancias cortas sin condiciones de dieléctrico (hasta 2.5 mm para esta configuración), analizar el fenómeno de división frecuencial es una forma efectiva de confirmar correctamente la presencia de la antena pasiva (o transpondedor), e incluso es posible determinar su distancia relativa a la antena activa (o lector). Cuando se añade un entorno dieléctrico, también se puede detectar la división frecuencial, pero en distancias más limitadas para condiciones de permitividad relativa alta. Estos hallazgos conducen a una forma viable de implementar un transpondedor de 1 bit de baja complejidad para aplicaciones de corto alcance.L'Enginyeria Elèctrica i de Telecomunicacions té actualment un paper fonamental en la recerca biomèdica i les seves aplicacions. El Grup de Microones i Antenes (MAG) de l'EPFL treballa decididament per tal d'ajudar en aquesta àrea vital per al conjunt de la societat, com ha estat malauradament demostrat una vegada més durant la crisi sanitària derivada de la pandèmia causada pel COVID-19 els darrers mesos. Amb aquest treball de fi de grau, he intentat fer la meva modesta aportació a aquest ampli tema, centrant-me en el camp de la Identificació per Ràdio Freqüència (RFID). A tal efecte, el principal objectiu d'aquest treball ha estat estudiar el fenomen de la divisió freqüencial (conegut en anglès com frequency splitting) i verificar si és possible identificar una antena elèctricament petita passiva del tipus espira elemental de 2mm de diàmetre mitjançant una altra antena activa de les mateixes característiques. S'ha comprovat que per a distàncies properes sense condicions de dielèctric (fins a 2,5mm en aquesta configuració), analitzar el fenomen de divisió freqüencial és una manera eficaç de confirmar correctament la presència de l'antena passiva (o transponedor), i és fins i tot possible determinar-ne la distància respecte a l'antena activa (o lector). Quan s'hi afegeix un entorn dielèctric, el fenomen de la divisió freqüencial pot ser detectat també, encara que en distàncies més limitades en condicions de permitivitats relatives elevades. Aquests resultats porten a una implementació viable d'un detector d'un bit de baixa complexitat per a aplicacions de curt abast

    Design and application of radio frequency identification systems

    Get PDF
    The recent world, development of effective technologies for linking the object wireless information is being prompted in various fields. Radio frequency identification (RFID) is the latest technology for automatic identification which allows the transmission of a unique serial number wirelessly. The purpose of this paper is to review RFID systems and its various components infrastructure. The components and features are still under research and being integrated in existing systems to create a marketable and potential new system. To achieve higher performance; low cost, low power RFID tag with efficient anticollision technique which provides a large throughput and flexible security mechanism is required. The review has shown different types of readers, antennas and tags which would becomes a bottleneck to reduce the RFID cost. The paper has shown details the entire components where RFID researchers will get benefit for the development of future technology. The challenges of RFID system design with the entire components (Reader, Tag and Antenna) and its advantages, disadvantages are briefly explained

    Project and Realization of a Wide-Range High-Frequency RFID Gate Allowing Omnidirectional Detection of Transponders

    Get PDF
    The paper describes the study and development of a 2-meter-wide HF RFID gate providing omnidirectional detection of transponders.Common commercial HF RFID gate structures provide a maximum reading range around 150 cm.Moreover, this value is in most cases guaranteed only for the maximum coupling direction, with lower values for the other 2 orientations. The proposed structure raises the value of the reading range up to 200 cm for every orientation of the transponder, with even better results (220 cm) when the transponder is in the position of maximum coupling. This result has been achieved through numerical simulations, focused on the study of the geometry of the antenna system and on the realization of the matching circuit and then confirmed with the physical implementation of the system

    Analysis and Design of Silicon based Integrated Circuits for Radio Frequency Identification and Ranging Systems at 24GHz and 60GHz Frequency Bands

    Get PDF
    This scientific research work presents the analysis and design of radio frequency (RF) integrated circuits (ICs) designed for two cooperative RF identification (RFID) proof of concept systems. The first system concept is based on localizable and sensor-enabled superregenerative transponders (SRTs) interrogated using a 24GHz linear frequency modulated continuous wave (LFMCW) secondary radar. The second system concept focuses on low power components for a 60GHz continuous wave (CW) integrated single antenna frontend for interrogating close range passive backscatter transponders (PBTs). In the 24GHz localizable SRT based system, a LFMCW interrogating radar sends a RF chirp signal to interrogate SRTs based on custom superregenerative amplifier (SRA) ICs. The SRTs receive the chirp and transmit it back with phase coherent amplification. The distance to the SRTs are then estimated using the round trip time of flight method. Joint data transfer from the SRT to the interrogator is enabled by a novel SRA quench frequency shift keying (SQ-FSK) based low data rate simplex communication. The SRTs are also designed to be roll invariant using bandwidth enhanced microstrip patch antennas. Theoretical analysis is done to derive expressions as a function of system parameters including the minimum SRA gain required for attaining a defined range and equations for the maximum number of symbols that can be transmitted in data transfer mode. Analysis of the dependency of quench pulse characteristics during data transfer shows that the duty cycle has to be varied while keeping the on-time constant to reduce ranging errors. Also the worsening of ranging precision at longer distances is predicted based on the non-idealities resulting from LFMCWchirp quantization due to SRT characteristics and is corroborated by system level measurements. In order to prove the system concept and study the semiconductor technology dependent factors, variants of 24GHz SRA ICs are designed in a 130nm silicon germanium (SiGe) bipolar complementary metal oxide technology (BiCMOS) and a partially depleted silicon on insulator (SOI) technology. Among the SRA ICs designed, the SiGe-BiCMOS ICs feature a novel quench pulse shaping concept to simultaneously improve the output power and minimum detectable input power. A direct antenna drive SRA IC based on a novel stacked transistor cross-coupled oscillator topology employing this concept exhibit one of the best reported combinations of minimum detected input power level of −100 dBm and output power level of 5.6 dBm, post wirebonding. The SiGe stacked transistor with base feedback capacitance topology employed in this design is analyzed to derive parameters including the SRA loop gain for design optimization. Other theoretical contributions include the analysis of the novel integrated quench pulse shaping circuit and formulas derived for output voltage swing taking bondwire losses into account. Another SiGe design variant is the buffered antenna drive SRA IC having a measured minimum detected input power level better than −80 dBm, and an output power level greater than 3.2 dBm after wirebonding. The two inputs and outputs of this IC also enables the design of roll invariant SRTs. Laboratory based ranging experiments done to test the concepts and theoretical considerations show a maximum measured distance of 77m while transferring data at the rate of 0.5 symbols per second using SQ-FSK. For distances less than 10m, the characterized accuracy is better than 11 cm and the precision is better than 2.4 cm. The combination of the maximum range, precision and accuracy are one of the best reported among similar works in literature to the author’s knowledge. In the 60GHz close range CW interrogator based system, the RF frontend transmits a continuous wave signal through the transmit path of a quasi circulator (QC) interfaced to an antenna to interrogate a PBT. The backscatter is received using the same antenna interfaced to the QC. The received signal is then amplified and downconverted for further processing. To prove this concept, two optimized QC ICs and a downconversion mixer IC are designed in a 22nm fully depleted SOI technology. The first QC is the transmission lines based QC which consumes a power of 5.4mW, operates at a frequency range from 56GHz to 64GHz and occupies an area of 0.49mm2. The transmit path loss is 5.7 dB, receive path gain is 2 dB and the tunable transmit path to receive path isolation is between 20 dB and 32 dB. The second QC is based on lumped elements, and operates in a relatively narrow bandwidth from 59.6GHz to 61.5GHz, has a gain of 8.5 dB and provides a tunable isolation better than 20 dB between the transmit and receive paths. This QC design also occupies a small area of 0.34mm² while consuming 13.2mW power. The downconversion is realized using a novel folded switching stage down conversion mixer (FSSDM) topology optimized to achieve one of the best reported combination of maximum voltage conversion gain of 21.5 dB, a factor of 2.5 higher than reported state-of-the-art results, and low power consumption of 5.25mW. The design also employs a unique back-gate tunable intermediate frequency output stage using which a gain tuning range of 5.5 dB is attained. Theoretical analysis of the FSSDM topology is performed and equations for the RF input stage transconductance, bandwidth, voltage conversion gain and gain tuning are derived. A feasibility study for the components of the 60GHz integrated single antenna interrogator frontend is also performed using PBTs to prove the system design concept.:1 Introduction 1 1.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scope and Functional Specifications . . . . . . . . . . . . . . . . . 4 1.3 Objectives and Structure . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Features and Fundamentals of RFIDs and Superregenerative Amplifiers 9 2.1 RFID Transponder Technology . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Chipless RFID Transponders . . . . . . . . . . . . . . . . . 10 2.1.2 Semiconductor based RFID Transponders . . . . . . . . . . 11 2.1.2.1 Passive Transponders . . . . . . . . . . . . . . . . 11 2.1.2.2 Active Transponders . . . . . . . . . . . . . . . . . 13 2.2 RFID Interrogator Architectures . . . . . . . . . . . . . . . . . . . 18 2.2.1 Interferometer based Interrogator . . . . . . . . . . . . . . . 19 2.2.2 Ultra-wideband Interrogator . . . . . . . . . . . . . . . . . . 20 2.2.3 Continuous Wave Interrogators . . . . . . . . . . . . . . . . 21 2.3 Coupling Dependent Range and Operating Frequencies . . . . . . . 25 2.4 RFID Ranging Techniques . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.0.1 Received Signal Strength based Ranging . . . . . 28 2.4.0.2 Phase based Ranging . . . . . . . . . . . . . . . . 30 2.4.0.3 Time based Ranging . . . . . . . . . . . . . . . . . 30 2.5 Architecture Selection for Proof of Concept Systems . . . . . . . . 32 2.6 Superregenerative Amplifier (SRA) . . . . . . . . . . . . . . . . . . 35 2.6.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . 42 2.6.3 Frequency Domain Characteristics . . . . . . . . . . . . . . 45 2.7 Semiconductor Technologies for RFIC Design . . . . . . . . . . . . 48 2.7.1 Silicon Germanium BiCMOS . . . . . . . . . . . . . . . . . 48 2.7.2 Silicon-on-Insulator . . . . . . . . . . . . . . . . . . . . . . . 48 3 24GHz Superregenerative Transponder based Identification and Rang- ing System 51 3.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 SRT Identification and Ranging . . . . . . . . . . . . . . . . 51 3.1.2 Power Link Analysis . . . . . . . . . . . . . . . . . . . . . . 55 3.1.3 Non-idealities . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.4 SRA Quench Frequency Shift Keying for data transfer . . . 61 3.1.5 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1 Low Power Direct Antenna Drive CMOS SRA IC . . . . . . 66 3.2.1.1 Circuit analysis and design . . . . . . . . . . . . . 66 3.2.1.2 Characterization . . . . . . . . . . . . . . . . . . . 69 3.2.2 Direct Antenna Drive SiGe SRA ICs . . . . . . . . . . . . . 71 3.2.2.1 Stacked Transistor Cross-coupled Quenchable Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.2.1.1 Resonator . . . . . . . . . . . . . . . . . . 72 3.2.2.1.2 Output Network . . . . . . . . . . . . . . 75 3.2.2.1.3 Stacked Transistor Cross-coupled Pair and Loop Gain . . . . . . . . . . . . . . . . . 77 3.2.2.2 Quench Waveform Design . . . . . . . . . . . . . . 85 3.2.2.3 Characterization . . . . . . . . . . . . . . . . . . . 89 3.2.3 Antenna Diversity SiGe SRA IC with Integrated Quench Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.2.3.1 Circuit Analysis and Design . . . . . . . . . . . . 91 3.2.3.1.1 Crosscoupled Pair and Sampling Current 94 3.2.3.1.2 Common Base Input Stage . . . . . . . . 95 3.2.3.1.3 Cascode Output Stage . . . . . . . . . . . 96 3.2.3.1.4 Quench Pulse Shaping Circuit . . . . . . 96 3.2.3.1.5 Power Gain . . . . . . . . . . . . . . . . . 99 3.2.3.2 Characterization . . . . . . . . . . . . . . . . . . . 102 3.2.4 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 103 3.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 106 3.3.1 Superregenerative Transponders . . . . . . . . . . . . . . . 106 3.3.1.1 Bandwidth Enhanced Microstrip Patch Antennas 108 3.3.2 FMCW Radar Interrogator . . . . . . . . . . . . . . . . . . 114 3.3.3 Chirp Z-transform Based Data Analysis . . . . . . . . . . . 116 4 60GHz Single Antenna RFID Interrogator based Identification System 121 4.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1 Quasi-circulator ICs . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1.1 Transmission Lines based Quasi-Circulator IC . . 126 4.2.1.2 Lumped Elements WPD based Quasi-Circulator . 130 4.2.1.3 Characterization . . . . . . . . . . . . . . . . . . . 134 4.2.1.4 Knowledge Gained . . . . . . . . . . . . . . . . . . 135 4.2.2 Folded Switching Stage Downconversion Mixer IC . . . . . 138 4.2.2.1 FSSDM Circuit Design . . . . . . . . . . . . . . . 138 4.2.2.2 Cascode Transconductance Stage . . . . . . . . . . 138 4.2.2.3 Folded Switching Stage with LC DC Feed . . . . . 142 4.2.2.4 LO Balun . . . . . . . . . . . . . . . . . . . . . . . 145 4.2.2.5 Backgate Tunable IF Stage and Offset Correction 146 4.2.2.6 Voltage Conversion Gain . . . . . . . . . . . . . . 147 4.2.2.7 Characterization . . . . . . . . . . . . . . . . . . . 150 4.2.2.8 Knowledge Gained . . . . . . . . . . . . . . . . . . 151 4.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 154 5 Experimental Tests 157 5.1 24GHz System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.1.1 Ranging Experiments . . . . . . . . . . . . . . . . . . . . . 157 5.1.2 Roll Invariance Experiments . . . . . . . . . . . . . . . . . . 158 5.1.3 Joint Ranging and Data Transfer Experiments . . . . . . . 158 5.2 60GHz System Detection Experiments . . . . . . . . . . . . . . . . 165 6 Summary and Future Work 167 Appendices 171 A Derivation of Parameters for CB Amplifier with Base Feedback Capac- itance 173 B Definitions 177 C 24GHz Experiment Setups 179 D 60 GHz Experiment Setups 183 References 185 List of Original Publications 203 List of Abbreviations 207 List of Symbols 213 List of Figures 215 List of Tables 223 Curriculum Vitae 22

    UHF Power Transmission for Passive Sensor Transponders

    Get PDF
    Passive transponder tags operating in the ultra high frequency (UHF) range receive their power supply from the electromagnetic carrier wave from a remote base station. The maximum range is largely determined by the circuits’ current consumption and the rectifier efficiency. Reading ranges of several meters have recently been reported for several state of the art RFID (Radio frequency IDentification) tags [1]. The presented UHF transponder chip with integrated temperature sensor was designed for a 0.35 ?m CMOS process with EEPROM, Schottky diodes, and double poly layers. Due to a more complex architecture and additional functionality, the power consumption of the presented sensor transponder tag is significantly larger than that of simple RFID tags. The A/D conversion requires a stable, ripple-free supply voltage with a relatively large DC value. A novel rectifier circuit generates the supply voltage from the high frequency antenna signal. The circuit requires only -11.4 dBm input power and is insensitive to temperature and process variations. The maximum operating distance is approximately 4.5 m

    Smart RFID Tags

    Get PDF

    Surface Acoustic Wave Based Magnetic Sensors

    Get PDF

    Broadband transponder based on coupled antenna elements and phased modulators

    Get PDF
    A broadband transponder was studied over a frequency range of 1-6 GHz, which had strongly coupled antenna elements and phase variable modulators, and its performance was compared with a reference transponder which had a single antenna element connected to a single modulator. First, the transponders were mathematically modelled and their performances were studied through computer simulations. Then, the transponders were prototyped/demonstrated and their performances were studied through measurements. In both simulations and measurements, it was found that the studied transponder with constantly phased modulators performed better than the reference transponder over a frequency range of 1-6 GHz. The studied transponder performed up to 40 dB higher at certain frequencies (e.g. at 1 GHz) compared with the reference transponder in both simulations as well as in measurements. In addition to this, the performance of the studied transponder with optimally phased modulators was further increased up to 10 dB at certain frequencies in simulations. The received power of the studied transponder was measured only for five random samples of phase values. Even with these five randomly sampled phase values, it was found that the performance of the studied transponder with the sampled phased modulators increased up to 6 dB at certain frequencies, compared with the studied transponder with constantly phased modulators
    corecore