10,267 research outputs found

    Assessing the Viability of Complex Electrical Impedance Tomography (EIT) with a Spatially Distributed Sensor Array for Imaging of River Bed Morphology: a Proof of Concept (Study)

    Get PDF
    This report was produced as part of a NERC funded ‘Connect A’ project to establish a new collaborative partnership between the University of Worcester (UW) and Q-par Angus Ltd. The project aim was to assess the potential of using complex Electrical Impedance Tomography (EIT) to image river bed morphology. An assessment of the viability of sensors inserted vertically into the channel margins to provide real-time or near real-time monitoring of bed morphology is reported. Funding has enabled UW to carry out a literature review of the use of EIT and existing methods used for river bed surveys, and outline the requirements of potential end-users. Q-par Angus has led technical developments and assessed the viability of EIT for this purpose. EIT is one of a suite of tomographic imaging techniques and has already been used as an imaging tool for medical analysis, industrial processing and geophysical site survey work. The method uses electrodes placed on the margins or boundary of the entity being imaged, and a current is applied to some and measured on the remaining ones. Tomographic reconstruction uses algorithms to estimate the distribution of conductivity within the object and produce an image of this distribution from impedance measurements. The advantages of the use of EIT lie with the inherent simplicity, low cost and portability of the hardware, the high speed of data acquisition for real-time or near real-time monitoring, robust sensors, and the object being monitored is done so in a non-invasive manner. The need for sophisticated image reconstruction algorithms, and providing images with adequate spatial resolution are key challenges. A literature review of the use of EIT suggests that to date, despite its many other applications, to the best of our knowledge only one study has utilised EIT for river survey work (Sambuelli et al 2002). The Sambuelli (2002) study supported the notion that EIT may provide an innovative way of describing river bed morphology in a cost effective way. However this study used an invasive sensor array, and therefore the potential for using EIT in a non-invasive way in a river environment is still to be tested. A review of existing methods to monitor river bed morphology indicates that a plethora of techniques have been applied by a range of disciplines including fluvial geomorphology, ecology and engineering. However, none provide non-invasive, low costs assessments in real-time or near real-time. Therefore, EIT has the potential to meet the requirements of end users that no existing technique can accomplish. Work led by Q-par Angus Ltd. has assessed the technical requirements of the proposed approach, including probe design and deployment, sensor array parameters, data acquisition, image reconstruction and test procedure. Consequently, the success of this collaboration, literature review, identification of the proposed approach and potential applications of this technique have encouraged the authors to seek further funding to test, develop and market this approach through the development of a new environmental sensor

    Visualisation of multi-dimensional medical images with application to brain electrical impedance tomography

    Get PDF
    Medical imaging plays an important role in modem medicine. With the increasing complexity and information presented by medical images, visualisation is vital for medical research and clinical applications to interpret the information presented in these images. The aim of this research is to investigate improvements to medical image visualisation, particularly for multi-dimensional medical image datasets. A recently developed medical imaging technique known as Electrical Impedance Tomography (EIT) is presented as a demonstration. To fulfil the aim, three main efforts are included in this work. First, a novel scheme for the processmg of brain EIT data with SPM (Statistical Parametric Mapping) to detect ROI (Regions of Interest) in the data is proposed based on a theoretical analysis. To evaluate the feasibility of this scheme, two types of experiments are carried out: one is implemented with simulated EIT data, and the other is performed with human brain EIT data under visual stimulation. The experimental results demonstrate that: SPM is able to localise the expected ROI in EIT data correctly; and it is reasonable to use the balloon hemodynamic change model to simulate the impedance change during brain function activity. Secondly, to deal with the absence of human morphology information in EIT visualisation, an innovative landmark-based registration scheme is developed to register brain EIT image with a standard anatomical brain atlas. Finally, a new task typology model is derived for task exploration in medical image visualisation, and a task-based system development methodology is proposed for the visualisation of multi-dimensional medical images. As a case study, a prototype visualisation system, named EIT5DVis, has been developed, following this methodology. to visualise five-dimensional brain EIT data. The EIT5DVis system is able to accept visualisation tasks through a graphical user interface; apply appropriate methods to analyse tasks, which include the ROI detection approach and registration scheme mentioned in the preceding paragraphs; and produce various visualisations

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 183

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1978

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 144

    Get PDF
    This bibliography lists 257 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1975

    Functional Electrical Impedance Tomography of adult and neonatal brain function.

    Get PDF
    Electrical Impedance Tomography (EIT) is a fast, portable imaging technique that produces tomographic images of the internal impedance of an object from surface electrode measurements. This thesis reports the first use of EIT to image evoked brain activity in adults and neonates and determines whether accurate EIT images could be obtained from the adult and neonatal brain. In addition, a realistic head-tank phantom was developed to test the performance of EIT with known impedance changes placed within a real human skull. Two EIT systems were used. Images were obtained using 31 or 21 Ag/AgCl EEG scalp electrodes in adults and neonates, respectively, with either 256 or 187 individual impedance measurements from different electrode combinations: 2 applied a safe, alternating current and 2 measured the resultant scalp voltage. Imaging was performed using a block design with 6-15 stimulation periods of between 10-75s during either: 1) Visual, 2) Somatosensory or 3) Motor stimuli. Impedance changes were detected in 38/39 adults and 9/9 neonates within 0.6-5.8s after stimulus onset, and returned to baseline 7.6-36s after stimulus cessation. Reconstructed images were noisy: -20-70% images showed correct localisation to the expected area of cortex stimulated by the visual, motor or somatosensory paradigms. As EIT images from the head-tank localised changes within 10% of the impedance perturbation, this indicated that poor localisation in humans was not due to the head-shape or the skull, but may be related to unknown physiological factors. An improved EIT reconstruction algorithm, using a computerised finite-element model of the head, showed improved localisation for the adult images. This is the first demonstration that EIT can detect and image impedance changes in the head, probably due to increased regional cerebral blood volume in the activated cortex. Improvements may enable more accurate neuroimaging of the adult and neonatal brain for use in clinical practice
    corecore