1,112 research outputs found

    An Analysis of Finite Element Approximation in Electrical Impedance Tomography

    Full text link
    We present a finite element analysis of electrical impedance tomography for reconstructing the conductivity distribution from electrode voltage measurements by means of Tikhonov regularization. Two popular choices of the penalty term, i.e., H1(Ω)H^1(\Omega)-norm smoothness penalty and total variation seminorm penalty, are considered. A piecewise linear finite element method is employed for discretizing the forward model, i.e., the complete electrode model, the conductivity, and the penalty functional. The convergence of the finite element approximations for the Tikhonov model on both polyhedral and smooth curved domains is established. This provides rigorous justifications for the ad hoc discretization procedures in the literature.Comment: 20 page

    Sparsity prior for electrical impedance tomography with partial data

    Full text link
    This paper focuses on prior information for improved sparsity reconstruction in electrical impedance tomography with partial data, i.e. data measured only on subsets of the boundary. Sparsity is enforced using an 1\ell_1 norm of the basis coefficients as the penalty term in a Tikhonov functional, and prior information is incorporated by applying a spatially distributed regularization parameter. The resulting optimization problem allows great flexibility with respect to the choice of measurement boundaries and incorporation of prior knowledge. The problem is solved using a generalized conditional gradient method applying soft thresholding. Numerical examples show that the addition of prior information in the proposed algorithm gives vastly improved reconstructions even for the partial data problem. The method is in addition compared to a total variation approach.Comment: 17 pages, 12 figure

    A Hybrid Segmentation and D-bar Method for Electrical Impedance Tomography

    Get PDF
    The Regularized D-bar method for Electrical Impedance Tomography provides a rigorous mathematical approach for solving the full nonlinear inverse problem directly, i.e. without iterations. It is based on a low-pass filtering in the (nonlinear) frequency domain. However, the resulting D-bar reconstructions are inherently smoothed leading to a loss of edge distinction. In this paper, a novel approach that combines the rigor of the D-bar approach with the edge-preserving nature of Total Variation regularization is presented. The method also includes a data-driven contrast adjustment technique guided by the key functions (CGO solutions) of the D-bar method. The new TV-Enhanced D-bar Method produces reconstructions with sharper edges and improved contrast while still solving the full nonlinear problem. This is achieved by using the TV-induced edges to increase the truncation radius of the scattering data in the nonlinear frequency domain thereby increasing the radius of the low pass filter. The algorithm is tested on numerically simulated noisy EIT data and demonstrates significant improvements in edge preservation and contrast which can be highly valuable for absolute EIT imaging

    A mathematical and numerical framework for ultrasonically-induced Lorentz force electrical impedance tomography

    Full text link
    We provide a mathematical analysis and a numerical framework for Lorentz force electrical conductivity imaging. Ultrasonic vibration of a tissue in the presence of a static magnetic field induces an electrical current by the Lorentz force. This current can be detected by electrodes placed around the tissue; it is proportional to the velocity of the ultrasonic pulse, but depends nonlinearly on the conductivity distribution. The imaging problem is to reconstruct the conductivity distribution from measurements of the induced current. To solve this nonlinear inverse problem, we first make use of a virtual potential to relate explicitly the current measurements to the conductivity distribution and the velocity of the ultrasonic pulse. Then, by applying a Wiener filter to the measured data, we reduce the problem to imaging the conductivity from an internal electric current density. We first introduce an optimal control method for solving such a problem. A new direct reconstruction scheme involving a partial differential equation is then proposed based on viscosity-type regularization to a transport equation satisfied by the current density field. We prove that solving such an equation yields the true conductivity distribution as the regularization parameter approaches zero. We also test both schemes numerically in the presence of measurement noise, quantify their stability and resolution, and compare their performance

    Adaptive Reconstruction for Electrical Impedance Tomography with a Piecewise Constant Conductivity

    Full text link
    In this work we propose and analyze a numerical method for electrical impedance tomography of recovering a piecewise constant conductivity from boundary voltage measurements. It is based on standard Tikhonov regularization with a Modica-Mortola penalty functional and adaptive mesh refinement using suitable a posteriori error estimators of residual type that involve the state, adjoint and variational inequality in the necessary optimality condition and a separate marking strategy. We prove the convergence of the adaptive algorithm in the following sense: the sequence of discrete solutions contains a subsequence convergent to a solution of the continuous necessary optimality system. Several numerical examples are presented to illustrate the convergence behavior of the algorithm.Comment: 26 pages, 12 figure

    Electrical Resistance Tomography of Conductive Thin Films

    Full text link
    The Electrical Resistance Tomography (ERT) technique is applied to the measurement of sheet conductance maps of both uniform and patterned conductive thin films. Images of the sheet conductance spatial distribution, and local conductivity values are obtained. Test samples are tin oxide films on glass substrates, with electrical contacts on the sample boundary, some samples are deliberately patterned in order to induce null conductivity zones of known geometry while others contain higher conductivity inclusions. Four-terminal resistance measurements among the contacts are performed with a scanning setup. The ERT reconstruction is performed by a numerical algorithm based on the total variation regularization and the L-curve method. ERT correctly images the sheet conductance spatial distribution of the samples. The reconstructed conductance values are in good quantitative agreement with independent measurements performed with the van der Pauw and the four-point probe methods.Comment: IEEE Transactions on Instrumentation and Measuremen
    corecore