231 research outputs found

    On the offline physical layer impairment aware RWA algorithms in transparent optical networks: state-of-the-art and beyond

    Get PDF
    In transparent optical networks with no regeneration, the problem of capacity allocation to traffic demands is called "Roting and Wavelength Assignment". Much work on this topic recently has focused on the dynamic case, whereby demands arrive and must be served in real-time. In addition, due to lack of regeneration, physical impairments accumulate as light propagates and QoT may become inappropiate (e.g., too high Bit Error Rate). Considering the physical layer impairments in the network planning phase gives rise to a class of RWA algorithms: offline Physical Layer Impairment Aware- (PLIA-)RWA. This paper makes a survey of such algorithms, proposes a taxonomy, and a comparison between these algorithms for common metrics. We also propose a novel offline PLIA-RWA algorithm, called POLIO-RWA, and show through simulations that it decreases blocking rate compared with other PLIA-RWA algorithms.Postprint (published version

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer

    Get PDF
    A vertical perspective, ranging from management and routing to physical layer options, concerning dynamic network monitoring and compensation of impairments (M&C), is given. Feasibility, reliability, and performance improvements on reconfigurable transparent networks are expected to arise from the consolidated assessment of network management and control specifications, as a more accurate evaluation of available M&C techniques. In the network layer, physical parameters aware algorithms are foreseen to pursue reliable network performance. In the physical layer, some new M&C methods were developed and rating of the state-of-the-art reported in literature is given. Optical monitoring implementation and viability is discussed.Publicad

    Scalable Impairment-Aware Anycast Routing in Multi-Domain Optical Grid Networks

    Get PDF
    ABSTRACT In optical Grid networks, the main challenge is to account for not only network parameters, but also for resource availability. Anycast routing has previously been proposed as an effective solution to provide job scheduling services in optical Grids, offering a generic interface to access Grid resources and services. The main weakness of this approach is its limited scalability, especially in a multi-domain scenario. This paper proposes a novel anycast proxy architecture, which extends the anycast principle to a multi-domain scenario. The main purpose of the architecture is to perform aggregation of resource and network states, and as such improve computational scalability and reduce control plane traffic. Furthermore, the architecture has the desirable properties of allowing Grid domains to maintain their autonomy and hide internal configuration details from other domains. Finally, we propose an impairment-aware anycast routing algorithm that incorporates the main physical layer characteristics of large-scale optical networks into its path computation process. By integrating the proposed routing scheme into the introduced architecture we demonstrate significant network performance improvements. Keywords: Grid computing, routing algorithms, optical networks, physical impairments, anycast routing. INTRODUCTION Today, the need for network systems to support storage and computing services for science and business, is often satisfied by relatively isolated computing infrastructure (clusters). Migration to truly distributed and integrated applications requires optimization and (re)design of the underlying network technology to create a Grid platform for the cost and resource efficient delivery of network services with substantial data transfer, processing power and/or data storage requirements. Optical networks offer an undeniable potential for the Grid, given their proven track-record in the context of high-speed, long-haul, networking. Not only eScience applications dealing with large experimental data sets (e.g. particle physics) but also business/consumer oriented applications can benefit from optical Grid infrastructure [1]: both the high data rates typical of eScience applications and the low latency requirements of consumer/business applications (cf. interactivity) can effectively be addressed. When using transparent WDM as such network technology, signals are transported end-to-end optically without being converted to the electrical domain in between. Connection provisioning of all-optical connections (lightpaths) between source and destination nodes is based on specific routing and wavelength assignment algorithms (RWA). Traditional RWA schemes only account for network conditions such as connectivity and available capacity, without considering physical layer details. However, in transparent optical networks covering large geographical areas, the optical signal experiences the accumulation of physical impairments through transmission and switching, possibly resulting in unacceptable signal quality Another emerging and challenging task in distributed and heterogeneous computing environments, is job scheduling: when and where to execute a given Grid job, based on the requirements of the job (for instance a deadline and minimal computational power) and the current state of the network and resources. Traditionally, a local scheduler optimizes utilization and performance of a single Grid site, while a meta-scheduler is distributes workload across different sites. Current implementations of these (meta-)schedulers only account for Grid resource availability In this paper we propose a novel architecture to support impairment-aware anycast routing for large-scale optical Grid networks. Section 2 discusses general approaches to support multi-domain networks. We then proceed to introduce a novel architecture, which can provide anycast Grid services in a multi-domain scenario (Section 3). Simulation analysis is used to demonstrate the improved scalability without incurring significant performance loss. Furthermore, Section 4 shows how to incorporate physical layer impairments, to further improve the performance of optical Grid networks. Conclusions are presented in Section 5

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie
    corecore