149,064 research outputs found

    Dispa-SET 2.0: unit commitment and power dispatch model

    Get PDF
    Most analyses of the future European energy system conclude that in order to achieve energy and climate change policy goals it will be necessary to ramp up the use of renewable energy sources. The stochastic nature of those energies, together with other sources of short- and long-term uncertainty, already have significant impacts in current energy systems operation and planning, and it is expected that future energy systems will be forced to become increasingly flexible in order to cope with these challenges. Therefore, policy makers need to consider issues such as the effects of intermittent energy sources on the reliability and adequacy of the energy system, the impacts of rules governing the curtailment or storage of energy, or how much backup dispatchable capacity may be required to guarantee that energy demand is safely met. Many of these questions are typically addressed by detailed models of the electric power sector with a high level of technological and temporal resolution. This report describes one of such models developed by the JRC's Institute for Energy and Transport: Dispa-SET 2.0, a unit commitment and dispatch model of the European power system aimed at representing with a high level of detail the short-term operation of large-scale power systems. The new model is an updated version of Dispa-SET 1.0, in use at the JRC since 2009.JRC.F.6-Energy Technology Policy Outloo

    Machine learning of power grid frequency dynamics and control: prediction, explanation and stochastic modelling

    Get PDF
    A reliable supply of electric power is not a matter of course. Power grids enable the transport of power from generators to consumers, but their stable operation constantly requires corrective measures and a careful supervision. In particular, power generation and demand have to be balanced at all times. A large power imbalance threatens the reliability of the power supply and can, in extreme cases, lead to a large-scale blackout. Therefore, the power imbalance is constantly corrected through distinct control schemes. The power grid frequency measures the balance of power generation and demand. To guarantee frequency stability, and thereby a balance of generation and demand, load-frequency control constantly counteracts large frequency deviations. However, the transition of the energy system to renewable energy sources challenges frequency stability and control. Wind and solar power do not provide intrinsic inertia, which leads to increasingly fast frequency dynamics. Different economic sectors become strongly coupled to the power system, as, for example, the adoption of electric vehicles will interconnect the transport sector and the power system. Finally, wind and solar power are weather-dependent, which increases the variability of power generation. All in all, this gives rise to diverse, interdependent and stochastic impact factors, that drive the balance of power demand and generation, and thus the grid frequency. How can we predict, explain and model frequency dynamics given its strong non-autonomous and stochastic character? In this thesis, I use machine learning to disentangle the effects of external drivers on grid frequency dynamics and control. First, I propose a prediction model that only uses historic frequency data, but fails in representing external impacts. Therefore, I include time series of techno-economic drivers and model their impact on grid frequency data using explainable machine learning methods. These methods reveal the dependencies between external drivers and frequency deviations, such as the important impact of forecast errors in the Scandinavian grid or the varying effects of different generation types. Finally, I integrate these drivers into a stochastic dynamical model of the grid frequency, which both represents short-term dynamics and long-term trends due to techno-economic impacts. My work complements traditional simulation-based approaches through validation and modelling inspiration. It offers flexible modelling and prediction tools for power system dynamics, which are profitable for systems with diverse impact factors but noisy and insufficient data

    Decentralized Demand Side Management with Rooftop PV in Residential Distribution Network

    Full text link
    In the past extensive researches have been conducted on demand side management (DSM) program which aims at reducing peak loads and saving electricity cost. In this paper, we propose a framework to study decentralized household demand side management in a residential distribution network which consists of multiple smart homes with schedulable electrical appliances and some rooftop photovoltaic generation units. Each smart home makes individual appliance scheduling to optimize the electric energy cost according to the day-ahead forecast of electricity prices and its willingness for convenience sacrifice. Using the developed simulation model, we examine the performance of decentralized household DSM and study their impacts on the distribution network operation and renewable integration, in terms of utilization efficiency of rooftop PV generation, overall voltage deviation, real power loss, and possible reverse power flows.Comment: 5 pages, 7 figures, ISGT 2018 conferenc

    Evaluating distributed generation impacts with a multiobjective index

    Get PDF
    Evaluating the technical impacts associated with connecting distributed generation to distribution networks is a complex activity requiring a wide range of network operational and security effects to be qualified and quantified. One means of dealing with such complexity is through the use of indices that indicate the benefit or otherwise of connections at a given location and which could be used to shape the nature of the contract between the utility and distributed generator. This paper presents a multiobjective performance index for distribution networks with distributed generation which considers a wide range of technical issues. Distributed generation is extensively located and sized within the IEEE-34 test feeder, wherein the multiobjective performance index is computed for each configuration. The results are presented and discussed

    Determinants of power spreads in electricity futures markets: A multinational analysis. ESRI WP580, December 2017

    Get PDF
    The growth in variable renewable energy (vRES) and the need for flexibility in power systems go hand in hand. We study how vRES and other factors, namely the price of substitute fuels, power price volatility, structural breaks, and seasonality impact the hedgeable power spreads (profit margins) of the main dispatchable flexibility providers in the current power systems - gas and coal power plants. We particularly focus on power spreads that are hedgeable in futures markets in three European electricity markets (Germany, UK, Nordic) over the time period 2009-2016. We find that market participants who use power spreads need to pay attention to the fundamental supply and demand changes in the underlying markets (electricity, CO2, and coal/gas). Specifically, we show that the total vRES capacity installed during 2009-2016 is associated with a drop of 3-22% in hedgeable profit margins of coal and especially gas power generators. While this shows that the expansion of vRES has a significant negative effect on the hedgeable profitability of dispatchable, flexible power generators, it also suggests that the overall decline in power spreads is further driven by the price dynamics in the CO2 and fuel markets during the sample period. We also find significant persistence (and asymmetric effects) in the power spreads volatility using a univariate TGARCH model
    • …
    corecore