6,471 research outputs found

    Electric Water Heater Modeling, DR Approaches Analysis and Study of Consumer Comfort for Demand Response

    Get PDF
    With the smart energy management system household residential appliances is able to participate in the demand response events. To reduce peak load demand and complexities in the local infrastructure DR can play an important role now a days. This paper presents a study and analysis of several papers on residential EWH DR modeling and implementation. It shows an overview of analysis of the most used and recent DR models for EWH. It also shows the analysis of the used methods to model this and the used approach in several papers. Additionally, the discussed consumer comforts and obtainable benefits in several papers by participating in DR events is also shown here. The study and analysis in this paper will contribute to the future research and encourage the end users to participate in households DR events.The present work was done and funded in the scope of the following projects: H2020 DREAM-GO Project (Marie Sklodowska-Curie grant agreement No 641794); SIMOCE (ANI|P2020 17690); and UID/EEA/00760/2019 funded by FEDER Funds through COMPETE program and by National Funds through FCT.info:eu-repo/semantics/publishedVersio

    Consumers and Experts: An Econometric Analysis of the Demand for Water Heaters

    Get PDF
    Consumers can accumulate product information on the basis of a combination of searching, product advertising and expert advice.Examples of experts who provide product information include doctors advising patients on treatments, motor mechanics diagnosing car problems and recommending repairs, accountants recommending investment strategies, and plumbers making recommendations on alternative water heaters.In each of these examples, the transactions involve the sale of goods and services where the seller is at the same time an expert providing advice on the amount and type of product or service to be purchased.In the case of water heaters, the plumber advising a consumer on their choice of water heater will most likely also install the appliance.Because of the information asymmetry there is potentially a strategic element in the transmission of information from expert to consumer.This paper reports on an econometric investigation of the factors that determine the choices made by consumers and the recommendations made by plumbers and the extent to which plumbers act in the best interests of their customers.The empirical work is made possible by the availability of stated preference data generated by designed experiments involving separate samples of Australian consumers and plumbers.We find some evidence that plumbers have higher preferences than consumers for heater characteristics that increase their profit margin.consumers;demand;product information;advertising;investment;econometrics

    POTEnCIA model description - version 0.9

    Get PDF
    This report lays out the modelling approach that is implemented in the POTEnCIA modelling tool (Policy Oriented Tool for Energy and Climate Change Impact Assessment) and describes its analytical capabilities. POTEnCIA is a modelling tool for the EU energy system that follows a hybrid partial equilibrium approach. It combines behavioural decisions with detailed techno-economic data, therefore allowing for an analysis of both technology-oriented policies and of those addressing behavioural change. Special features and mechanisms are introduced in POTEnCIA in order to appropriately reflect the implications of an uptake of novel energy technologies and of changing market structures, allowing for the robust assessment of ambitious policy futures for the EU energy system. The model runs on an annual basis with a typical projection timeline to 2050.JRC.J.1-Economics of Climate Change, Energy and Transpor

    Aspects of autonomous demand response through frequency based control of domestic water heaters

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering in the School of Electrical and Information Engineering, July 2017This dissertation presents the design and testing of controllers intended to provide au- tonomous demand response, through the use of water heater loads and grid frequency measurements. The controllers use measured frequency as an indication of the strain on a utility grid, which allows demand side management to be isolated from any form of central control. Water heaters can operate as exible loads because their power consump- tion can be dispatched or deferred without directly impacting users. These properties make it possible to control individual water heaters based on the functioning of the grid, rather than end user input. The purpose of this research is to ultimately provide a low- cost alternative to a traditional Smart Grid, that will improve the resilience of a grid without negatively impacting users. The controllers presented here focus on ensuring that users receive hot water, while attempting to reduce any imbalance between power generated and power consumed on the grid. Simulations of these controllers in various situations highlight that while the controllers developed respond suitably to variations in the grid frequency and adequately ensure end users receive hot water, the practical bene t of the controllers depends largely on the intrinsic characteristics of the grid.CK201

    Thermal energy storage in residential buildings: a study of the benefits and impacts

    Get PDF
    Residential space and water heating accounts for around 13% of the greenhouse gas emissions of the UK. Reducing this is essential for meeting the national emission reduction target of 80% by 2050 from the 1990 baseline. One of the strategies adopted for achieving this is focused around large scale shift towards electrical heating. This could lead to unsustainable disparity between the daily peak and off-peak electricity loads, large seasonal variation in electricity demands, and challenges of matching the short and long term supply with the demands. These challenges could impact the security and resilience of UK electricity supply, and needs to be addressed. Rechargeable Thermal Energy Storage (TES) in residential buildings can help overcome these challenges by enabling Heat Demand Shifts (HDS) to off-peak times, reducing the magnitude of the peak loads, and the difference between the peak and off-peak loads. To be effective a wide scale uptake of TES would be needed. For this to happen, the benefits and impacts of TES both for the demand side and the supply side have to be explored, which could vary considerably given the diverse physical, thermal, operational and occupancy characteristics of the UK housing stock. A greater understanding of the potential consequence of TES in buildings is necessary. Such knowledge could enable appropriate policy development to help drive the uptake of TES or to encourage development of alternative solutions. Through dynamic building simulation in TRNSYS, this work generated predictions of the space and water heating energy and power demands, and indoor temperature characteristics of the UK housing stock. Twelve building archetypes were created consisting of: Detached, semi-detached, mid-terrace and flat built forms with thermal insulation corresponding to the 1990 building regulation, and occupied floor areas of 70m2, 90m2 and 150m2. Typical occupancy and operational conditions were used to create twelve Base Case scenarios, and simulations performed for 60 winter days from 2nd January. HDS of 2, 3 and 4 hours from the grid peak time of 17:00 were simulated with sensible TES system sizes of 0.25m3, 0.5m3 and 0.75m3, and water storage temperatures of 75°C and 95°C. Parametric analysis were performed to determine the impacts and benefits of: thermal insulation equivalent to 1980, 1990 (Base Case), 2002 and 2010 building regulation; locations of Gatwick (Base Case) and Aberdeen; heating durations of 6, 9 (Base Case), 12 and 16 hours per day; thermostat settings of 19°C, 21°C (Base Case) and 23°C, and number of occupiers of 1 person and 3 persons (Base Case) per household. Good correlation was observed between the simulated results and published heat energy consumption data for buildings with similar thermal, physical, occupancy and operational conditions. The results allowed occupied space temperatures and overall daily and grid peak time energy consumption to be predicted for the range of building archetypes and parameter values considered, and the TES size necessary for a desired HDS to be determined. The main conclusions drawn include: The overall daily energy consumption predictions varied from 36.8kWh to 159.7kWh. During the critical grid peak time (17:00 to 21:00) the heat consumption varied from 4.2kWh to 58.7kWh, indicating the range of energy demands which could be shifted to off-peak times. On average, semi-detached, mid-terrace, and flat built forms consumed 7.0%, 13.8% and 22.7% less energy for space heating than the detached built form respectively. Thermal insulation changing from the 1990 building regulation level to the 1980 and 2010 building regulation levels could change the mean energy use by +14.7% and -19.6% respectively. A 0.25m3 TES size with 75°C water storage temperature could enable a 2 hour HDS, shifting 4.3kWh to 11.7kWh (mean 8.7kWh) to off peak times, in all 70m2 Base Case archetypes with the 60 day mean thermal comfort of 100%, but with the minimum space temperature occasionally dropping below an 18°C thermal comfort limit. A 0.5m3 TES size and water storage of 95°C could allow a 3 hour HDS, shifting 9.8kWh to 28.2kWh (mean 18.7kWh) to off peak times, in all 90m2 Base Case archetypes without thermal comfort degradation below 18°C. A 0.75m3 TES with a 95°C water temperature could provide 4 hour HDS, shifting 13.9kWh to 47.7kWh (mean 27.2kWh) to off peak times, in all 150m2 Base Case archetypes with 100% mean thermal comfort but with the 60 day minimum temperature occasionally dropping below the 18°C thermal comfort limit in the detached built form. Improving the thermal insulation of the buildings was found to be the best way to improve the effectiveness of HDS with TES, in terms of the demand shift period achievable with minimal thermal comfort impact. A 4 hour HDS with 100% thermal comfort is possible in all 90m2 floor area buildings with a 0.25m3 tank and a water storage temperature of 75°C provided that the thermal insulation is as per 2010 building regulation. Recommendations for further research include: 1) creating larger number of archetype models to reflect the housing stock; 2) using heat pumps as the heat source so that the mean effect on the grid from electric heating loads can be predicted; 3) taking into account the costs associated with taking up HDS with TES, in terms of capital expenses and space requirement for housing the TES system; 4) considering alternative methods of heat storage such as latent heat storage to enhance the storage capacity per unit volume; and 5) incorporating zonal temperature control, for example, only heating rooms that are occupied during the demand shift period, which could ensure better thermal comfort in the occupied space and extend the demand shift period

    An integrated model to evaluate water-energy-food nexus at a household scale

    Get PDF
    ArticleThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.To achieve a sustainable supply and effectively manage water, energy and food (WEF) demand, interactions between WEF need to be understood. This study developed an integrated model, capturing the interactions between WEF at end-use level at a household scale. The model is based on a survey of 419 households conducted to investigate WEF over winter and summer for the city of Duhok, Iraq. A bottom-up approach was used to develop this system dynamics-based model. The model estimates WEF demand and the generated organic waste and wastewater quantities. It also investigates the impact of change in user behaviour, diet, income, family size and climate. The simulation results show a good agreement with the historical data. Using the model, the impact of Global Scenario Group (GSG) scenarios was investigated. The results suggest that the ‘fortress world’ scenario (an authoritarian response to the threat of breakdown) had the highest impact on WEF.This work was financially supported by the Human Capacity Development Program in Higher Education (HCED) in Kurdistan, Iraq. We acknowledge the support for this work provided by Dr. Sarah Ward and Ziyad Ahmed

    Enhancing the efficiency of electricity utilization through home energy management systems within the smart grid framework

    Get PDF
    The concept behind smart grids is the aggregation of “intelligence” into the grid, whether through communication systems technologies that allow broadcast/data reception in real-time, or through monitoring and systems control in an autonomous way. With respect to the technological advancements, in recent years there has been a significant increment in devices and new strategies for the implementation of smart buildings/homes, due to the growing awareness of society in relation to environmental concerns and higher energy costs, so that energy efficiency improvements can provide real gains within modern society. In this perspective, the end-users are seen as active players with the ability to manage their energy resources, for example, microproduction units, domestic loads, electric vehicles and their participation in demand response events. This thesis is focused on identifying application areas where such technologies could bring benefits for their applicability, such as the case of wireless networks, considering the positive and negative points of each protocol available in the market. Moreover, this thesis provides an evaluation of dynamic prices of electricity and peak power, using as an example a system with electric vehicles and energy storage, supported by mixed-integer linear programming, within residential energy management. This thesis will also develop a power measuring prototype designed to process and determine the main electrical measurements and quantify the electrical load connected to a low voltage alternating current system. Finally, two cases studies are proposed regarding the application of model predictive control and thermal regulation for domestic applications with cooling requirements, allowing to minimize energy consumption, considering the restrictions of demand, load and acclimatization in the system
    • 

    corecore