5,718 research outputs found

    Impact of variance components on reliability of absolute quantification using digital PCR

    Get PDF
    Background: Digital polymerase chain reaction (dPCR) is an increasingly popular technology for detecting and quantifying target nucleic acids. Its advertised strength is high precision absolute quantification without needing reference curves. The standard data analytic approach follows a seemingly straightforward theoretical framework but ignores sources of variation in the data generating process. These stem from both technical and biological factors, where we distinguish features that are 1) hard-wired in the equipment, 2) user-dependent and 3) provided by manufacturers but may be adapted by the user. The impact of the corresponding variance components on the accuracy and precision of target concentration estimators presented in the literature is studied through simulation. Results: We reveal how system-specific technical factors influence accuracy as well as precision of concentration estimates. We find that a well-chosen sample dilution level and modifiable settings such as the fluorescence cut-off for target copy detection have a substantial impact on reliability and can be adapted to the sample analysed in ways that matter. User-dependent technical variation, including pipette inaccuracy and specific sources of sample heterogeneity, leads to a steep increase in uncertainty of estimated concentrations. Users can discover this through replicate experiments and derived variance estimation. Finally, the detection performance can be improved by optimizing the fluorescence intensity cut point as suboptimal thresholds reduce the accuracy of concentration estimates considerably. Conclusions: Like any other technology, dPCR is subject to variation induced by natural perturbations, systematic settings as well as user-dependent protocols. Corresponding uncertainty may be controlled with an adapted experimental design. Our findings point to modifiable key sources of uncertainty that form an important starting point for the development of guidelines on dPCR design and data analysis with correct precision bounds. Besides clever choices of sample dilution levels, experiment-specific tuning of machine settings can greatly improve results. Well-chosen data-driven fluorescence intensity thresholds in particular result in major improvements in target presence detection. We call on manufacturers to provide sufficiently detailed output data that allows users to maximize the potential of the method in their setting and obtain high precision and accuracy for their experiments

    Considerations for accurate gene expression measurement by reverse transcription quantitative PCR when analysing clinical samples

    Get PDF
    Reverse transcription quantitative PCR is an established, simple and effective method for RNA measurement. However, technical standardisation challenges combined with frequent insufficient experimental detail render replication of many published findings challenging. Consequently, without adequate consideration of experimental standardisation, such findings may be sufficient for a given publication but cannot be translated to wider clinical application. This article builds on earlier standardisation work and the MIQE guidelines, discussing processes that need consideration for accurate, reproducible analysis when dealing with patient samples. By applying considerations common to the science of measurement (metrology), one can maximise the impact of gene expression studies, increasing the likelihood of their translation to clinical tools

    Comparison of digital PCR platforms and semi-nested qPCR as a tool to determine the size of the HIV reservoir

    Get PDF
    HIV persists in latently infected cells of patients on antiretroviral therapy (ART). This persistent proviral DNA reservoir is an important predictor of viral rebound upon therapy failure or interruption and forms a major obstacle towards cure. Accurate quantification of the low levels of persisting HIV DNA may aid patient monitoring and cure research. Digital PCR is a promising tool that enables direct absolute quantification with high sensitivity. With recent technological advances, several platforms are available to implement digital PCR in a clinical setting. Here, we compared two digital PCR platforms, the Quantstudio 3D (Life Technologies) and the QX100 (Bio-Rad) with a semi-nested qPCR on serial HIV DNA dilutions and DNA isolated from PBMCs of ART-suppressed patients. All three methods were able to detect target to the lowest levels of 2.5 HIV DNA copies. The QX100 excelled in having the least bias and highest precision, efficiency and quantitative linearity. Patient sample quantifications by the QX100 and semi-nested qPCR were highly agreeable by Bland-Altman analysis (0.01 ± 0.32 log10). Due to the observation of false-positive signals with current digital PCR platforms however, semi-nested qPCR may still be preferred in a setup of low quantity detection to discriminate between presence or absence of HIV DNA

    The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020

    Get PDF
    Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology

    Application of digital PCR for public health-related water quality monitoring

    Get PDF
    Digital polymerase chain reaction (dPCR) is emerging as a reliable platform for quantifying microorganisms in the field of water microbiology. This paper reviews the fundamental principles of dPCR and its application for health-related water microbiology. The relevant literature indicates increasing adoption of dPCR for measuring fecal indicator bacteria, microbial source tracking marker genes, and pathogens in various aquatic environments. The adoption of dPCR has accelerated recently due to increasing use for wastewater surveillance of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) -the virus that causes Coronavirus Disease 2019 (COVID-19). The collective experience in the scientific literature indicates that well-optimized dPCR assays can quantify genetic material from microorganisms without the need for a calibration curve and often with superior analytical performance (i.e., greater sensitivity, precision, and reproducibility) than quantitative polymerase chain reaction (qPCR). Nonetheless, dPCR should not be viewed as a panacea for the fundamental uncertainties and limitations associated with measuring microorganisms in water microbiology. With dPCR platforms, the sample analysis cost and processing time are typically greater than qPCR. However, if improved analytical performance (i.e., sensitivity and accuracy) is critical, dPCR can be an alternative option for quantifying microorganisms, including pathogens, in aquatic environments.Peer reviewe

    Toward reliable biomarker signatures in the age of liquid biopsies - how to standardize the small RNA-Seq workflow

    Get PDF
    Small RNA-Seq has emerged as a powerful tool in transcriptomics, gene expression profiling and biomarker discovery. Sequencing cell-free nucleic acids, particularly microRNA (miRNA), from liquid biopsies additionally provides exciting possibilities for molecular diagnostics, and might help establish disease-specific biomarker signatures. The complexity of the small RNA-Seq workflow, however, bears challenges and biases that researchers need to be aware of in order to generate high-quality data. Rigorous standardization and extensive validation are required to guarantee reliability, reproducibility and comparability of research findings. Hypotheses based on flawed experimental conditions can be inconsistent and even misleading. Comparable to the well-established MIQE guidelines for qPCR experiments, this work aims at establishing guidelines for experimental design and pre-analytical sample processing, standardization of library preparation and sequencing reactions, as well as facilitating data analysis. We highlight bottlenecks in small RNA-Seq experiments, point out the importance of stringent quality control and validation, and provide a primer for differential expression analysis and biomarker discovery. Following our recommendations will en-courage better sequencing practice, increase experimental transparency and lead to more reproducible small RNA-Seq results. This will ultimately enhance the validity of biomarker signatures, and allow reliable and robust clinical predictions

    Validation of a rapid test to dose SO2 in vinegar

    Get PDF
    Sulfur dioxide is generally used in wine and vinegar production. It is employed to decrease the bacteria' growth, improve the wines' aroma (since it supports the extraction of polyphenols during maceration), protect the wines from chemical oxidation and the musts from chemical and enzymatic oxidation (blocking free radicals and oxidase enzymes such as tyrosinase and laccase). The composition and storage conditions (i.e., pH, temperature, and alcohol levels) affect oenological results. In various countries, competent authorities have imposed legal limits since it can have toxic effects on humans. It is crucial to dose SO2 levels to allow vinegar production and compliance with legal limits. The iodometric titration named "Ripper test" is the legal method used to dose it in vinegar. In this work, an automatized colorimetric test was validated using the international guidelines ISO/IEC (2017) to allow its use instead of the Ripper test. The test reliability was verified on white, red, and balsamic vinegar with low or high SO2 content. The automatized test showed linearity, precision, and reproducibility similar to the Ripper test, but the accuracy parameter was not respected for the vinegar with a low concentration of SO2. Therefore, the automatized colorimetric test can be helpful to dose SO2 in vinegar with high concentrations of SO2

    Form-function relationships in dragonfly mandibles under an evolutionary perspective

    Get PDF
    © 2017 The Author(s). Functional requirements may constrain phenotypic diversification or foster it. For insect mouthparts, the quantification of the relationship between shape and function in an evolutionary framework remained largely unexplored. Here, the question of a functional influence on phenotypic diversification for dragonfly mandibles is assessed with a large-scale biomechanical analysis covering nearly all anisopteran families, using finite element analysis in combination with geometric morphometrics. A constraining effect of phylogeny could be found for shape, the mandibular mechanical advantage (MA), and certain mechanical joint parameters, while stresses and strains, the majority of joint parameters and size are influenced by shared ancestry. Furthermore, joint mechanics are correlated with neither strain nor mandibular MA and size effects have virtually play no role for shape or mechanical variation. The presence of mandibular strengthening ridges shows no phylogenetic signal except for one ridge peculiar to Libelluloidea, and ridge presence is also not correlated with each other. The results suggest that functional traits are more variable at this taxonomic level and that they are not influenced by shared ancestry. At the same time, the results contradict the widespread idea that mandibular morphology mainly reflects functional demands at least at this taxonomic level. The varying functional factors rather lead to the same mandibular performance as expressed by the MA, which suggests a many-to-one mapping of the investigated parameters onto the same narrow mandibular performance space
    corecore