2,771 research outputs found

    Spanish named entity recognition in the biomedical domain

    Get PDF
    Named Entity Recognition in the clinical domain and in languages different from English has the difficulty of the absence of complete dictionaries, the informality of texts, the polysemy of terms, the lack of accordance in the boundaries of an entity, the scarcity of corpora and of other resources available. We present a Named Entity Recognition method for poorly resourced languages. The method was tested with Spanish radiology reports and compared with a conditional random fields system.Peer ReviewedPostprint (author's final draft

    Extracting information from radiology reports by Natural Language Processing and Deep Learning

    Get PDF
    This work was supported by the NLP4RARE-CM-UC3M, which was developed under the Interdisciplinary Projects Program for Young Researchers at University Carlos III of Madrid. The work was also supported by the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M17), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation)

    Semantic annotation of electronic health records in a multilingual environment

    Get PDF
    Tese de mestrado, Bioinformática e Biologia Computacional (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2017Os relatórios de Radiologia descrevem os resultados dos procedimentos de radiografia e têm o potencial de ser uma fonte de informação útil que pode trazer benefícios para os sistemas de saúde ao redor do mundo. No entanto, estes relatórios são geralmente escritos em texto livre e, portanto, é difícil extrair automaticamente informação a partir deles. Contudo, o fato de que a maioria dos relatórios estão agora digitalmente disponíveis torna-os passíveis de utilização de ferramentas de Prospeção de Texto (Text Mining). Outra vantagem dos relatórios de Radiologia, que os torna mais suscetíveis à utilização destas ferramentas, é que mesmo se escritos em texto livre, eles são geralmente bem estruturados. O problema é que estas ferramentas são principalmente desenvolvidas para Inglês e os relatórios são geralmente escritos na língua nativa do radiologista, que não é necessariamente o Inglês. Isso cria um obstáculo para a partilha de informação de Radiologia entre diferentes comunidades, partilha esta importante para compreender e tratar eficazmente problemas de saúde. Existem basicamente duas soluções possíveis para este problema. Uma solução é traduzir o próprio léxico que é utilizado pela ferramenta de Prospeção de Texto que se pretende utilizar. A outra é traduzir os próprios relatórios. Traduzir o léxico tem a vantagem de não necessitar de tradução contínua, ou seja, depois de traduzir um léxico para, por exemplo, Espanhol, podemos usá-lo para processar tantos relatórios Espanhóis não traduzidas conforme necessário. No entanto, quando uma nova versão do léxico é lançada as mudanças também precisam de ser traduzidas, caso contrário, o léxico traduzido ficaria desatualizado. Dada a crescente evolução de serviços de tradução hoje disponíveis, neste trabalho é avaliada a opção alternativa de traduzir os relatórios e verificar a sua viabilidade. Esta abordagem tem a vantagem de que os relatórios traduzidos seriam acessíveis a qualquer médico que entenda Inglês e as ferramentas estado da arte de Prospeção de Texto focadas em texto em Inglês podem ser aplicadas sem qualquer necessidade de adaptação. Se a tradução for feita por profissionais treinados em tradução de textos médicos, provavelmente pode-se assumir que informação não se perde no processo de tradução. Chamamos a este tipo de tradução Tradução Humana (Human Translation). Mas a utilização de tradutores especializados é cara e não escalável. Outra opção é usar Tradução Automática (Machine Translation). Não obstante a menor qualidade da tradução, é mais barata e mais viável em grande escala. Finalmente, uma opção que tenta obter o melhor dos dois mundos é usar Tradução Automática seguida de Pós-Edição (Post-Edition) por humanos. Nesta abordagem, o texto é automaticamente traduzido e, em seguida, a tradução é corrigida por um humano. Mais barata do que a opção de Tradução Humana e com melhor qualidade do que a de Tradução Automática. A escolha de abordagem de tradução é importante porque vai afetar a qualidade dos resultados das ferramentas de Prospeção de Texto. Atualmente não há nenhum estudo disponível publicamente que tenha fornecido evidência quantitativa que auxilie a fazer esta escolha. Isto pode ser explicado pela falta de um corpus paralelo que poderia ser usado para estudar este problema. Este trabalho explora a solução de traduzir os relatórios para Inglês antes de aplicar as ferramentas de Prospeção de Texto, analisando a questão de qual a abordagem de tradução que deve ser usada. Com este fim, criei MRRAD (Multilingual Radiology Research Articles Dataset), um corpus paralelo de 51 artigos portugueses de investiga ção relacionados com Radiologia, e uma série de traduções alternativas (humanas, automáticas e semi-automáticas) para Inglês. As versões originais dos artigos, em Português, e as traduções humanas foram extraídas automaticamente da biblioteca online SciELO. As traduções automáticas foram obtidas utilizando os serviços da Yandex e da Google e traduções semi-automáticas através dos serviços da Unbabel. Este é um corpus original que pode ser usado no avanço da investigação sobre este tema. Usando o MRRAD estudei que tipo de abordagem de tradução autom ática ou semi-automática é mais eficaz na tarefa de Reconhecimento de Entidades (Named-Entity Recognition ) relacionados com Radiologia mencionadas na versão em Inglês dos artigos. Estas entidades correspondem aos termos presentes no RadLex, que é uma ontologia que se foca em termos relacionados com Radiologia. A tarefa de Reconhecimento de Entidades é relevante uma vez que os seus resultados podem ser usadas em sistemas de Recuperação de Imagens (Image Retrieval ) e de Recuperação de Informação (Information Retrieval) e podem ser úteis para melhorar Sistemas de Respostas a Perguntas (Question Answering). Para realizar o Reconhecimento de termos do RadLex utilizei a API do Open Biomedical Annotator e duas diferentes configurações do software NOBLE Coder. Assim, ao todo utilizei três diferentes abordagens para identificar termos RadLex nos textos. A diferença entre as abordagens está em quão flexíveis ou estritas estas são em identificar os termos. Considerando os termos identificados nas traduções humanas como o padrão ouro (gold-standard ), calculei o quão semelhante a este padrão foram os termos identificados usando outras abordagens de tradução. Descobri que uma abordagem completamente automática de tradução utilizando o Google leva a micro F-Scores (entre 0,861 e 0,868, dependendo da abordagem de reconhecimento) semelhantes aos obtidos através de uma abordagem mais cara, tradução semi-automática usando Unbabel (entre 0,862 e 0,870). A abordagem de tradução utilizando os serviços da Yandex obteve micro F-Scores mais baixos (entre 0,829 e 0,831). Os resultados foram semelhantes mesmo no caso onde se consideraram apenas termos de RadLex pertences às sub-árvores correspondentes a entidades anatómicas e achados clínicos. Para entender melhor os resultados, também realizei uma análise qualitativa do tipo de erros encontrados nas traduções automáticas e semiautom áticas. A análise foi feita sobre os Falsos Positivos (FPs) e Falsos Negativos (FNs) cometidos pelas traduções utilizando Yandex, Google e Unbabel em 9 documentos aleatórios e cada erro foi classificado por tipo. A maioria dos FPs e FNs são explicados não por uma tradução errada mas por outras causas, por exemplo, uma tradução alternativa que leva a uma diferença nos termos identificados. Poderia ser esperado que as traduções Unbabel tivessem muitos menos erros, visto que têm o envolvimento de humanos, do que as da Google, mas isso nem sempre acontece. Há situações em que erros são até adicionados mesmo durante a etapa de Pós-Edição. Uma revisão dos erros faz-me propor que isso poderá ser devido à falta de conhecimento médico dos editores (utilizadores responsáveis por fazer a Pós-Edição) atuais da Unbabel. Por exemplo, um stroke (acidente vascular cerebral) é algo que ocorre no cérebro, mas num caso foi usado como algo que acontece no coração - alguém com algum conhecimento sobre a medicina não faria este erro. Mas a verdade é que a Unbabel atualmente não se foca em conteúdo médico. Prevejo que se eles o fizessem e investissem em crescer uma comunidade de utilizadores especialistas com melhor conhecimento da linguagem médica, isso levaria a melhores resultados. Dito isto, os resultados deste trabalho corroboram a conclusão de que se engenheiros de software tiverem recursos financeiros limitados para pagar por Tradução Humana, ficarão melhor servidos se usarem um serviço de tradução automática como a Google em vez de um serviço que implementa Pós-Edição, como a Unbabel. É claro que talvez haja melhores serviços de Tradução Automática do que a Google ou melhores serviços de Tradução Automática + Pós-Edição do que a Unbabel oferece atualmente para o campo médico, e isso é algo que poderia ser explorado em trabalhos futuros. O corpus MRRAD e as anotações utilizadas neste trabalho podem ser encontradas em https://github.com/lasigeBioTM/MRRAD.Radiology reports describe the results of radiography procedures and have the potential of being an useful source of information which can bring benefits to health care systems around the world. One way to automatically extract information from the reports is by using Text Mining tools. The problem is that these tools are mostly developed for English and reports are usually written in the native language of the radiologist, which is not necessarily English. This creates an obstacle to the sharing of Radiology information between different communities. This work explores the solution of translating the reports to English before applying the Text Mining tools, probing the question of what translation approach should be used. Having this goal, I created MRRAD (Multilingual Radiology Research Articles Dataset), a parallel corpus of Portuguese research articles related to Radiology and a number of alternative translations (human, automatic and semiautomatic) to English. This is a novel corpus which can be used to move forward the research on this topic. Using MRRAD, I studied which kind of automatic or semi-automatic translation approach is more effective on the Named-entity recognition task of finding RadLex terms in the English version of the articles. Considering the terms identified in human translations as the gold standard, I calculated how similar to this standard were the terms identified using other translation approaches (Yandex, Google and Unbabel). I found that a completely automatic translation approach using Google leads to micro F-Scores (between 0.861 and 0.868, depending on the identification approach) similar to the ones obtained through a more expensive semi-automatic translation approach using Unbabel (between 0.862 and 0.870). To better understand the results I also performed a qualitative analysis of the type of errors found in the automatic and semi-automatic translations. The MRRAD corpus and annotations used in this work can be found at https://github.com/lasigeBioTM/MRRAD

    Classification of Radiology Reports Using Neural Attention Models

    Full text link
    The electronic health record (EHR) contains a large amount of multi-dimensional and unstructured clinical data of significant operational and research value. Distinguished from previous studies, our approach embraces a double-annotated dataset and strays away from obscure "black-box" models to comprehensive deep learning models. In this paper, we present a novel neural attention mechanism that not only classifies clinically important findings. Specifically, convolutional neural networks (CNN) with attention analysis are used to classify radiology head computed tomography reports based on five categories that radiologists would account for in assessing acute and communicable findings in daily practice. The experiments show that our CNN attention models outperform non-neural models, especially when trained on a larger dataset. Our attention analysis demonstrates the intuition behind the classifier's decision by generating a heatmap that highlights attended terms used by the CNN model; this is valuable when potential downstream medical decisions are to be performed by human experts or the classifier information is to be used in cohort construction such as for epidemiological studies

    Design and evaluation of an ontology based information extraction system for radiological reports

    Get PDF
    Cataloged from PDF version of article.This paper describes an information extraction system that extracts and converts the available information in free text Turkish radiology reports into a structured information model using manually created extraction rules and domain ontology. The ontology provides flexibility in the design of extraction rules, and determines the information model for the extracted semantic information. Although our information extraction system mainly concentrates on abdominal radiology reports, the system can be used in another field of medicine by adapting its ontology and extraction rule set. We achieved very high precision and recall results during the evaluation of the developed system with unseen radiology reports. (C) 2010 Elsevier Ltd. All rights reserved

    Deep Learning -- A first Meta-Survey of selected Reviews across Scientific Disciplines, their Commonalities, Challenges and Research Impact

    Full text link
    Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Similar to the basic structure of a brain, a deep learning algorithm consists of an artificial neural network, which resembles the biological brain structure. Mimicking the learning process of humans with their senses, deep learning networks are fed with (sensory) data, like texts, images, videos or sounds. These networks outperform the state-of-the-art methods in different tasks and, because of this, the whole field saw an exponential growth during the last years. This growth resulted in way over 10,000 publications per year in the last years. For example, the search engine PubMed alone, which covers only a sub-set of all publications in the medical field, provides already over 11,000 results in Q3 2020 for the search term 'deep learning', and around 90% of these results are from the last three years. Consequently, a complete overview over the field of deep learning is already impossible to obtain and, in the near future, it will potentially become difficult to obtain an overview over a subfield. However, there are several review articles about deep learning, which are focused on specific scientific fields or applications, for example deep learning advances in computer vision or in specific tasks like object detection. With these surveys as a foundation, the aim of this contribution is to provide a first high-level, categorized meta-survey of selected reviews on deep learning across different scientific disciplines. The categories (computer vision, language processing, medical informatics and additional works) have been chosen according to the underlying data sources (image, language, medical, mixed). In addition, we review the common architectures, methods, pros, cons, evaluations, challenges and future directions for every sub-category.Comment: 83 pages, 22 figures, 9 tables, 100 reference

    Impact of translation on biomedical information extraction from real-life clinical notes

    Full text link
    The objective of our study is to determine whether using English tools to extract and normalize French medical concepts on translations provides comparable performance to French models trained on a set of annotated French clinical notes. We compare two methods: a method involving French language models and a method involving English language models. For the native French method, the Named Entity Recognition (NER) and normalization steps are performed separately. For the translated English method, after the first translation step, we compare a two-step method and a terminology-oriented method that performs extraction and normalization at the same time. We used French, English and bilingual annotated datasets to evaluate all steps (NER, normalization and translation) of our algorithms. Concerning the results, the native French method performs better than the translated English one with a global f1 score of 0.51 [0.47;0.55] against 0.39 [0.34;0.44] and 0.38 [0.36;0.40] for the two English methods tested. In conclusion, despite the recent improvement of the translation models, there is a significant performance difference between the two approaches in favor of the native French method which is more efficient on French medical texts, even with few annotated documents.Comment: 26 pages, 2 figures, 5 table

    Named Entity Recognition and Linking in a Multilingual Biomedical Setting

    Get PDF
    Tese de mestrado, Bioinformática e Biologia Computacional, Universidade de Lisboa, Faculdade de Ciências, 2021Information analysis is an essential process for all researchers and physicians. However, the amount of biomedical literature that we currently have available and the format in which it is found make this process difficult. Therefore, it is essential to apply text mining tools to automatically obtain information from these documents. The problem is that most of these tools are not designed to deal with non-English languages, which is critical in the biomedical literature, since many of these documents are written in the authors’ native language. Although there have been organized several shared tasks where text mining tools were developed for the Spanish language, the same does not happen for the Portuguese language. However, due to the lexical similarity between the two languages, it is possible to hypothesize that the tools for the two languages may be similar and that there is an annotation transfer between Portuguese and Spanish. To contribute to the development of text mining tools for Portuguese and Spanish, this dissertation presents the ICERL (Iberian Cancer-related Entity Recognition and Linking) system, a NERL (Named Entity Recognition and Linking) system that uses deep learning and it is composed of two similar pipelines for each language, and the parallel corpus ICR (Iberian Cancer-related) corpus. Both these tools are focused on the oncology domain. The application of the ICERL system on the ICR corpus resulted in 3,999 annotations in Spanish and 3,287 in Portuguese. The similarities between the annotations of the two languages and the F1-score of 0.858 that resulted from the comparison of the Portuguese annotations with the Spanish ones confirm the hypothesis initially presented.A divulgação de descobertas realizadas pelos investigadores e médicos é feita através de vários documentos como livros, artigos, patentes e outros tipos de publicações. Para que investigadores estejam atualizados sobre a sua área de interesse, é essencial que realizem uma análise rápida e eficaz destes documentos. Isto porque, quanto mais eficiente for esta fase, melhores serão os resultados que serão obtidos e, quanto mais rápida for, mais tempo poderão dedicar a outras componentes dos seus trabalhos. No entanto, a velocidade com que estes documentos são publicados e o facto de o texto presente nos mesmos ser expresso em linguagem natural dificulta esta tarefa. Por isso, torna-se essencial a aplicação de ferramentas de prospeção de texto para a extração de informação. As ferramentas de prospeção de texto são compostas por diversas etapas, como por exemplo, Reconhecimento de Entidades Nomeadas (em inglês Named Entity Recognition ou NER) e Mapeamento de Entidades Nomeadas (em inglês Named Entity Linking ou NEL). A etapa NER corresponde à identificação de uma entidade no texto. NEL consiste na ligação de entidades a uma base de conhecimento. Os sistemas estado-de-arte para a NER são métodos de aprendizagem profunda e normalmente utilizam a arquitetura BiLSTM-CRF. Por outro lado, os sistemas estado-de-arte NEL usam não só métodos de aprendizagem profunda, mas também métodos baseados em grafos. A maioria dos sistemas de prospeção de texto que atualmente temos disponíveis está desenhada ape nas para a língua inglesa, o que é problemático, pois muitas das vezes a literatura biomédica encontra-se descrita na língua nativa dos autores. Para resolver este problema têm surgido competições para desenvolver sistemas de prospeção de texto para outras línguas que não o inglês. Uma das línguas que têm sido um dos principais focos destas competições é a língua espanhola. O espanhol é a segunda língua com o maior número de falantes nativos no mundo e com um elevado número de publicações biomédicas disponível. Um dos exemplos de competições para a língua espanhola é o CANTEMIST. O objetivo do CANTEMIST passa pela identificação de entidades do domínio oncológico e a ligação das mesmas à base de dados Clasificación Internacional de Enfermedades para Oncología (CIE-O). Por outro lado, o português não têm sido alvo de grande interesse por parte destas competições. Devido ao facto de que o português e o espanhol derivarem do latim, existe uma semelhança lexical elevada entre as duas línguas (89%). Portanto, é possível assumir que as soluções encontradas para espanhol possam ser adaptadas ou utilizadas para o português, e que exista transferências de anotações entre as duas línguas. Por isso, o objetivo deste trabalho passa por criar ferramentas que validem esta hipótese: o sistema ICERL (Iberian Cancer-related Entity Recognition and Linking) e o corpus ICR (Iberian Cancer-related). O sistema ICERL é um sistema NERL (Named Entity Recognition and Linking) bilíngue português-espanhol, enquanto que o ICR é um corpus paralelo para as mesmas línguas. Ambas as ferramentas estão desenhadas para o domínio oncológico. A primeira etapa no desenvolvimento do sistema ICERL passou pela criação de uma pipeline NERL para a língua espanhola específica para o domínio oncológico. Esta pipeline foi baseada no trabalho desenvolvido pela equipa LasigeBioTM na competição CANTEMIST. A abordagem apresentada pelo LasigeBioTM no CANTEMIST consiste na utilização da framework Flair para a tarefa NER e do algoritmo Personalized PageRank (PPR) para a tarefa NEL. O Flair é uma ferramenta que permite a combinação de diferentes embeddings (representações vetoriais para palavras) de diferentes modelos num só para a tarefa NER. O PPR é uma variação do algoritmo PageRank que é utilizado para classificar importância de páginas web. O algoritmo PageRank é aplicado sobre um grafo. Originalmente, cada nó do grafo representava uma página web e as ligações entre nós representavam hiperligações entre páginas. O algoritmo estima a coerência de cada nó no grafo, isto é, a sua relevância. No contexto da tarefa NEL, o grafo é composto por candidatos para as entidades de interesse. O Flair foi utilizado pela equipa LasigeBioTM para o treino de embeddings que foram obtidos em documentos em espanhol do PubMed. Estes embeddings foram integrados num modelo para NER que foi treinado nos conjuntos de treino e desenvolvimento do corpus do CANTEMIST. O modelo treinado foi depois utilizado no conjunto de teste do corpus do CANTEMIST para a obtenção de ficheiros de anotação com as entidades reconhecidas. Foi depois feita uma procura pelos candidatos para a tarefa de NEL das entidades reconhecidas em três bases de dados: o CIE-O, o Health Sciences Descriptors (DeCS) e o International Classification of Diseases (ICD). A partir destes candidatos foi construído um grafo e através do algoritmo PPR os candidatos foram classificados e foi escolhido o melhor candidato para ligar cada entidade. Esta pipeline foi aperfeiçoada através da adição de novos embeddings, um prolongamento do treino no modelo NER e uma correção de erros no código do sistema para a tarefa NEL. Apesar destas alterações contribuírem para um aumento significativo na performance da tarefa NEL (medida-F de 0.0061 para 0.665), o mesmo não aconteceu para a tarefa NER (medida-F de 0.741 para 0.754). A versão final do sistema ICERL é composta por uma pipeline para a língua portuguesa e pela pipeline que foi testada no corpus do CANTEMIST, com uma ligeira diferença na tarefa NEL: em vez de ser escolhido apenas um candidato para cada entidade, é escolhida uma lista de candidatos do CIE-O e o DeCS. Já na pipeline portuguesa são escolhidos candidatos do DeCS e da Classificação Internacional de Doenças (CID). Esta diferença na tarefa NEL deve-se ao método que foi utilizado para avaliar a performance do sistema ICERL e para não restringir o sistema a apenas um candidato e a um vocabulário. Para a construção da pipeline portuguesa, três modelos para a tarefa NER foram testados e concluiu-se que a melhor abordagem passaria pela combinação de um modelo semelhante ao modelo utilizado na pipeline espanhola e o modelo BioBERTpt. Devido à elevada semelhança lexical entre as duas línguas, foi testada a hipótese de utilização da mesma pipeline para as duas línguas. No entanto, através do software NLPStatTest foi possível concluir que a utilização de uma pipeline específica para cada língua traduz-se numa melhoria de 58 por cento na medida-F para os textos em português. O corpus ICR é composto por 1555 documentos para cada língua que foram retirados do SciELO. Uma vez que a pipeline espanhola foi treinada com ficheiros do CANTEMIST corpus, foi também necessário retirar documentos do SciELO e do PubMed para treinar a pipeline portuguesa. O sistema ICERL foi aplicado ao corpus ICR e o método de avaliação passou pela comparação dos resultados das anotações portuguesas com as anotações em espanhol. Isto porque foi possível avaliar a performance da pipeline espanhol no corpus do CANTEMIST, e os resultados obtidos foram próximos do estado-de-arte. A aplicação do sistema ICERL no corpus ICR resultou em 3999 anotações em espanhol sendo que 216 dessas anotações são únicas e 3287 em português sendo que 171 dessas anotações são únicas. Para além disso, a entidade câncer é a entidade mais frequente para as duas línguas. Para além destas semelhanças nas anotações, o facto de ter sido obtido 0.858 em medida-F no método de avaliação permite concluir que existe transferências de anotações entre as duas línguas e que é possível utilizar ferramentas de prospeção de texto semelhantes para ambas

    Ontology-driven and weakly supervised rare disease identification from clinical notes

    Get PDF
    BACKGROUND: Computational text phenotyping is the practice of identifying patients with certain disorders and traits from clinical notes. Rare diseases are challenging to be identified due to few cases available for machine learning and the need for data annotation from domain experts. METHODS: We propose a method using ontologies and weak supervision, with recent pre-trained contextual representations from Bi-directional Transformers (e.g. BERT). The ontology-driven framework includes two steps: (i) Text-to-UMLS, extracting phenotypes by contextually linking mentions to concepts in Unified Medical Language System (UMLS), with a Named Entity Recognition and Linking (NER+L) tool, SemEHR, and weak supervision with customised rules and contextual mention representation; (ii) UMLS-to-ORDO, matching UMLS concepts to rare diseases in Orphanet Rare Disease Ontology (ORDO). The weakly supervised approach is proposed to learn a phenotype confirmation model to improve Text-to-UMLS linking, without annotated data from domain experts. We evaluated the approach on three clinical datasets, MIMIC-III discharge summaries, MIMIC-III radiology reports, and NHS Tayside brain imaging reports from two institutions in the US and the UK, with annotations. RESULTS: The improvements in the precision were pronounced (by over 30% to 50% absolute score for Text-to-UMLS linking), with almost no loss of recall compared to the existing NER+L tool, SemEHR. Results on radiology reports from MIMIC-III and NHS Tayside were consistent with the discharge summaries. The overall pipeline processing clinical notes can extract rare disease cases, mostly uncaptured in structured data (manually assigned ICD codes). CONCLUSION: The study provides empirical evidence for the task by applying a weakly supervised NLP pipeline on clinical notes. The proposed weak supervised deep learning approach requires no human annotation except for validation and testing, by leveraging ontologies, NER+L tools, and contextual representations. The study also demonstrates that Natural Language Processing (NLP) can complement traditional ICD-based approaches to better estimate rare diseases in clinical notes. We discuss the usefulness and limitations of the weak supervision approach and propose directions for future studies
    corecore