190,258 research outputs found

    A Review of Traffic Signal Control.

    Get PDF
    The aim of this paper is to provide a starting point for the future research within the SERC sponsored project "Gating and Traffic Control: The Application of State Space Control Theory". It will provide an introduction to State Space Control Theory, State Space applications in transportation in general, an in-depth review of congestion control (specifically traffic signal control in congested situations), a review of theoretical works, a review of existing systems and will conclude with recommendations for the research to be undertaken within this project

    Few-mode fibers and AO-assisted high resolution spectroscopy: coupling efficiency and modal noise mitigation

    Full text link
    NIRPS (Near Infra-Red Planet Searcher) is an AO-assisted and fiber-fed spectrograph for high precision radial velocity measurements that will operate in the YJH-bands. While using an AO system in such instrument is generally considered to feed a single-mode fiber, NIRPS is following a different path by using a small multi-mode fiber (more specifically called "few-mode fiber"). This choice offers an excellent trade-off by allowing to design a compact cryogenic spectrograph, while maintaining a high coupling efficiency under bad seeing conditions and for faint stars. The main drawback resides in a much more important modal-noise, a problem that has to be tackled for allowing 1m/s precision radial velocity measurements. We study the impact of using an AO system to couple light into few-mode fibers. We focus on two aspects: the coupling efficiency into few-mode fibers and the question of modal noise and scrambling. We show first that NIRPS can reach coupling >= 50% up to magnitude I=12, and offer a gain of 1-2 magnitudes over a single-mode solution. We finally show that the best strategy to mitigate modal noise with the AO system is among the simplest: a continuous tip-tilt scanning of the fiber core.Comment: 10 pages, 5 figures. Proceeding of the AO4ELT5 conferenc

    17-11 Evaluation of Transit Priority Treatments in Tennessee

    Get PDF
    Many big cities are progressively implementing transit friendly corridors especially in urban areas where traffic may be increasing at an alarming rate. Over the years, Transit Signal Priority (TSP) has proven to be very effective in creating transit friendly corridors with its ability to improve transit vehicle travel time, serviceability and reliability. TSP as part of Transit Oriented Development (TOD) is associated with great benefits to community liveability including less environmental impacts, reduced traffic congestions, fewer vehicular accidents and shorter travel times among others.This research have therefore analysed the impact of TSP on bus travel times, late bus recovery at bus stop level, delay (on mainline and side street) and Level of Service (LOS) at intersection level on selected corridors and intersections in Nashville Tennessee; to solve the problem of transit vehicle delay as a result of high traffic congestion in Nashville metropolitan areas. This study also developed a flow-delay model to predict delay per vehicle for a lane group under interrupted flow conditions and compared some measure of effectiveness (MOE) before and after TSP. Unconditional green extension and red truncation active priority strategies were developed via Vehicle Actuated Programming (VAP) language which was tied to VISSIM signal controller to execute priority for transit vehicles approaching the traffic signal at 75m away from the stop line. The findings from this study indicated that TSP will recover bus lateness at bus stops 25.21% to 43.1% on the average, improve bus travel time by 5.1% to 10%, increase side street delay by 15.9%, and favour other vehicles using the priority approach by 5.8% and 11.6% in travel time and delay reduction respectively. Findings also indicated that TSP may not affect LOS under low to medium traffic condition but LOS may increase under high traffic condition
    • …
    corecore