1,370 research outputs found

    Signal theory and processing for burst-mode and ScanSAR interferometry

    Get PDF

    Retrieval of Ocean Surface Currents and Winds Using Satellite SAR backscatter and Doppler frequency shift

    Get PDF
    Ocean surface winds and currents play an important role for weather, climate, marine life, ship navigation, oil spill drift and search and rescue. In-situ observations of the ocean are sparse and costly. Satellites provide a useful complement to these observations. Synthetic aperture radar (SAR) is particularly attractive due to its high spatial resolution and its capability to extract both sea surface winds and currents day and night and almost independent of weather.The work in this thesis involves processing of along-track interferometric SAR (ATI-SAR) data, analysis of the backscatter and Doppler frequency shift, and development of wind and current retrieval algorithms. Analysis of the Doppler frequency shift showed a systematic bias. A calibration method was proposed and implemented to correct for this bias. Doppler analysis also showed that the wave contribution to the SAR Doppler centroid often dominates over the current contribution. This wave contribution is estimated using existing theoretical and empirical Doppler models. For wind and current retrieval, two methods were developed and implemented.The first method, called the direct method, consists of retrieval of the wind speed from SAR backscatter using an empirical backscatter model. In order to retrieve the radial current, the retrieved wind speed is used to correct for the wave contribution. The current retrieval was assessed using two different (theoretical and empirical) Doppler models and wind inputs (model and SAR-derived). It was found that the results obtained by combining the Doppler empirical model with the SAR-derived wind speed were more consistent with ocean models.The second method, called Bayesian method, consists of blending the SAR observables (backscatter and Doppler shift) with an atmospheric and an oceanic model to retrieve the total wind and current vector fields. It was shown that this method yields more accurate estimates, i.e. reduces the models biases against in-situ measurements. Moreover, the method introduces small scale features, e.g. fronts and meandering, which are weakly resolved by the models.The correlation between the surface wind vectors and the SAR Doppler shift was demonstrated empirically using the Doppler shift estimated from over 300 TanDEM-X interferograms and ECMWF reanalysis wind vectors. Analysis of polarimetric data showed that theoretical models such as Bragg and composite surface models over-estimate the backscatter polarization ratio and Doppler shift polarization difference. A combination of a theoretical Doppler model and an empirical modulation transfer function was proposed. It was found that this model is more consistent with the analyzed data than the pure theoretical models.The results of this thesis will be useful for integrating SAR retrievals in ocean current products and assimilating SAR observables in the atmospheric, oceanic or coupled models. The results are also relevant for preparation studies of future satellite missions

    Remote Sensing Retrieval Study of the Surface Kinetic Parameters in the Yangtze Estuary and Its Adjacent Waters

    Get PDF
    Wind and current are significant parameters in the hydrodynamic processes, making a significant effect on the expansion of the Yangtze (Changjiang River) Diluted Water, sediment transport, resuspension and shelf circulation in the Yangtze Estuary. They are indispensable as input parameters in the numerical simulation of these phenomena. Synthetic aperture radar (SAR) can acquire data with different resolutions (down to 1 m) and coverage (up to 400 km) over a site during day or night time under all weather conditions, being capable of providing ocean surface kinetic parameters with high resolution. SAR images were collected to verify and improve the validity of wind direction retrieval by 2D fast Fourier transformation (FFT) method, wind speed by CMOD4 model and current by Doppler frequency method. These SAR-retrieved wind and current results were analyzed and assessed against in situ data and corresponding numerically simulated surface wind and current fields. Comparisons to the in situ and simulations show that 1) SAR can measure sea surface wind fields with a high resolution at sub-km scales and provide a powerful complement to conventional wind measurement techniques. 2) The Doppler shift anomaly measurements from SAR images are able to capture quantitative surface currents, thus are helpful to reveal the multi-scale upper layer dynamics around the East China Sea

    Definition phase of Grand Tour missions/radio science investigations study for outer planets missions

    Get PDF
    Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    In-depth verification of Sentinel-1 and TerraSAR-X geolocation accuracy using the Australian Corner Reflector Array

    Full text link
    This article shows how the array of corner reflectors (CRs) in Queensland, Australia, together with highly accurate geodetic synthetic aperture radar (SAR) techniques—also called imaging geodesy—can be used to measure the absolute and relative geometric fidelity of SAR missions. We describe, in detail, the end-to-end methodology and apply it to TerraSAR-X Stripmap (SM) and ScanSAR (SC) data and to Sentinel-1interferometric wide swath (IW) data. Geometric distortions within images that are caused by commonly used SAR processor approximations are explained, and we show how to correct them during postprocessing. Our results, supported by the analysis of 140 images across the different SAR modes and using the 40 reflectors of the array, confirm our methodology and achieve the limits predicted by theory for both Sentinel-1 and TerraSAR-X. After our corrections, the Sentinel-1 residual errors are 6 cm in range and 26 cm in azimuth, including all error sources. The findings are confirmed by the mutual independent processing carried out at University of Zurich (UZH) and German Aerospace Center (DLR). This represents an improve�ment of the geolocation accuracy by approximately a factor of four in range and a factor of two in azimuth compared with the standard Sentinel-1 products. The TerraSAR-X results are even better. The achieved geolocation accuracy now approaches that of the global navigation satellite system (GNSS)-based survey of the CRs positions, which highlights the potential of the end-to-end SAR methodology for imaging geodesy

    EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    Get PDF

    Measuring currents, ice drift, and waves from space: the Sea Surface KInematics Multiscale monitoring (SKIM) concept

    Get PDF
    We propose a new satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40?km and more, with snapshots at least every day for latitudes 75 to 82, and every few days otherwise. The use of incidence angles at 6 and 12 degrees allows a measurement of the directional wave spectrum which yields accurate corrections of the wave-induced bias in the current measurements. The instrument principle, algorithm for current velocity and mission performance are presented here. The proposed instrument can reveal features on tropical ocean and marginal ice zone dynamics that are inaccessible to other measurement systems, as well as a global monitoring of the ocean mesoscale that surpasses the capability of today?s nadir altimeters. Measuring ocean wave properties facilitates many applications, from wave-current interactions and air-sea fluxes to the transport and convergence of marine plastic debris and assessment of marine and coastal hazards
    • …
    corecore