779 research outputs found

    A Generalized Spatial Correlation Model for 3D MIMO Channels based on the Fourier Coefficients of Power Spectrums

    Full text link
    Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance by exploiting the channel's degrees of freedom in the elevation, which necessitates the derivation and characterization of three-dimensional (3D) channels in the presence of spatial correlation. In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for 3D MIMO channels. This novel SCF is developed for a uniform linear array of antennas with nonisotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. The resulting expression depends on the underlying arbitrary angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. The developed SCF determines the covariance matrices at the transmitter and the receiver that form the Kronecker channel model. In order to quantify the effects of correlation on the system performance, the information-theoretic deterministic equivalents of the MI for the Kronecker model are utilized in both mono-user and multi-user cases. Numerical results validate the proposed analytical expressions and elucidate the dependence of the system performance on azimuth and elevation angular spreads and antenna patterns. Some useful insights into the behaviour of MI as a function of downtilt angles are provided. The derived model will help evaluate the performance of correlated 3D MIMO channels in the future.Comment: Accepted in IEEE Transactions on signal processin

    Does Massive MIMO Fail in Ricean Channels?

    Get PDF
    Massive multiple-input multiple-output (MIMO) is now making its way to the standardization exercise of future 5G networks. Yet, there are still fundamental questions pertaining to the robustness of massive MIMO against physically detrimental propagation conditions. On these grounds, we identify scenarios under which massive MIMO can potentially fail in Ricean channels, and characterize them physically, as well as, mathematically. Our analysis extends and generalizes a stream of recent papers on this topic and articulates emphatically that such harmful scenarios in Ricean fading conditions are unlikely and can be compensated using any standard scheduling scheme. This implies that massive MIMO is intrinsically effective at combating interuser interference and, if needed, can avail of the base-station scheduler for further robustness.Comment: IEEE Wireless Communications Letters, accepte

    Massive MIMO performance evaluation based on measured propagation data

    Full text link
    Massive MIMO, also known as very-large MIMO or large-scale antenna systems, is a new technique that potentially can offer large network capacities in multi-user scenarios. With a massive MIMO system, we consider the case where a base station equipped with a large number of antenna elements simultaneously serves multiple single-antenna users in the same time-frequency resource. So far, investigations are mostly based on theoretical channels with independent and identically distributed (i.i.d.) complex Gaussian coefficients, i.e., i.i.d. Rayleigh channels. Here, we investigate how massive MIMO performs in channels measured in real propagation environments. Channel measurements were performed at 2.6 GHz using a virtual uniform linear array (ULA) which has a physically large aperture, and a practical uniform cylindrical array (UCA) which is more compact in size, both having 128 antenna ports. Based on measurement data, we illustrate channel behavior of massive MIMO in three representative propagation conditions, and evaluate the corresponding performance. The investigation shows that the measured channels, for both array types, allow us to achieve performance close to that in i.i.d. Rayleigh channels. It is concluded that in real propagation environments we have characteristics that can allow for efficient use of massive MIMO, i.e., the theoretical advantages of this new technology can also be harvested in real channels.Comment: IEEE Transactions on Wireless Communications, 201

    Uplink Analysis of Large MU-MIMO Systems With Space-Constrained Arrays in Ricean Fading

    Full text link
    Closed-form approximations to the expected per-terminal signal-to-interference-plus-noise-ratio (SINR) and ergodic sum spectral efficiency of a large multiuser multiple-input multiple-output system are presented. Our analysis assumes correlated Ricean fading with maximum ratio combining on the uplink, where the base station (BS) is equipped with a uniform linear array (ULA) with physical size restrictions. Unlike previous studies, our model caters for the presence of unequal correlation matrices and unequal Rice factors for each terminal. As the number of BS antennas grows without bound, with a finite number of terminals, we derive the limiting expected per-terminal SINR and ergodic sum spectral efficiency of the system. Our findings suggest that with restrictions on the size of the ULA, the expected SINR saturates with increasing operating signal-to-noise-ratio (SNR) and BS antennas. Whilst unequal correlation matrices result in higher performance, the presence of strong line-of-sight (LoS) has an opposite effect. Our analysis accommodates changes in system dimensions, SNR, LoS levels, spatial correlation levels and variations in fixed physical spacings of the BS array.Comment: 7 pages, 3 figures, accepted for publication in the proceedings of IEEE ICC, to be held in Paris, France, May 201
    • …
    corecore