69 research outputs found

    Uloga mera sličnosti u analizi vremenskih serija

    Get PDF
    The subject of this dissertation encompasses a comprehensive overview and analysis of the impact of Sakoe-Chiba global constraint on the most commonly used elastic similarity measures in the field of time-series data mining with a focus on classification accuracy. The choice of similarity measure is one of the most significant aspects of time-series analysis  -  it should correctly reflect the resemblance between the data presented in the form of time series. Similarity measures represent a critical component of many tasks of mining time series, including: classification, clustering, prediction, anomaly detection, and others. The research covered by this dissertation is oriented on several issues: 1.  review of the effects of  global constraints on the performance of computing similarity measures, 2.  a detailed analysis of the influence of constraining the elastic similarity measures on the accuracy of classical classification techniques, 3.  an extensive study of the impact of different weighting schemes on the classification of time series, 4.  development of an open source library that integrates the main techniques and methods required for analysis and mining time series, and which is used for the realization of these experimentsPredmet istraživanja ove disertacije obuhvata detaljan pregled i analizu uticaja Sakoe-Chiba globalnog ograničenja na najčešće korišćene elastične mere sličnosti u oblasti data mining-a vremenskih serija sa naglaskom na tačnost klasifikacije. Izbor mere sličnosti jedan je od najvažnijih aspekata analize vremenskih serija  -  ona treba  verno reflektovati sličnost između podataka prikazanih u obliku vremenskih serija.  Mera sličnosti predstavlјa kritičnu komponentu mnogih zadataka  mining-a vremenskih serija, uklјučujući klasifikaciju, grupisanje (eng.  clustering), predviđanje, otkrivanje anomalija i drugih. Istraživanje obuhvaćeno ovom disertacijom usmereno je na nekoliko pravaca: 1.  pregled efekata globalnih ograničenja na performanse računanja mera sličnosti, 2.  detalјna analiza posledice ograničenja elastičnih mera sličnosti na tačnost klasifikacije klasičnih tehnika klasifikacije, 3.  opsežna studija uticaj različitih načina računanja težina (eng. weighting scheme) na klasifikaciju vremenskih serija, 4.  razvoj biblioteke otvorenog koda (Framework for Analysis and Prediction  -  FAP) koja će integrisati glavne tehnike i metode potrebne za analizu i mining  vremenskih serija i koja je korišćena za realizaciju ovih eksperimenata.Predmet istraživanja ove disertacije obuhvata detaljan pregled i analizu uticaja Sakoe-Chiba globalnog ograničenja na najčešće korišćene elastične mere sličnosti u oblasti data mining-a vremenskih serija sa naglaskom na tačnost klasifikacije. Izbor mere sličnosti jedan je od najvažnijih aspekata analize vremenskih serija  -  ona treba  verno reflektovati sličnost između podataka prikazanih u obliku vremenskih serija.  Mera sličnosti predstavlja kritičnu komponentu mnogih zadataka  mining-a vremenskih serija, uključujući klasifikaciju, grupisanje (eng.  clustering), predviđanje, otkrivanje anomalija i drugih. Istraživanje obuhvaćeno ovom disertacijom usmereno je na nekoliko pravaca: 1.  pregled efekata globalnih ograničenja na performanse računanja mera sličnosti, 2.  detaljna analiza posledice ograničenja elastičnih mera sličnosti na tačnost klasifikacije klasičnih tehnika klasifikacije, 3.  opsežna studija uticaj različitih načina računanja težina (eng. weighting scheme) na klasifikaciju vremenskih serija, 4.  razvoj biblioteke otvorenog koda (Framework for Analysis and Prediction  -  FAP) koja će integrisati glavne tehnike i metode potrebne za analizu i mining  vremenskih serija i koja je korišćena za realizaciju ovih eksperimenata

    The Influence of Global Constraints on Similarity Measures for Time-Series Databases

    Full text link
    A time series consists of a series of values or events obtained over repeated measurements in time. Analysis of time series represents and important tool in many application areas, such as stock market analysis, process and quality control, observation of natural phenomena, medical treatments, etc. A vital component in many types of time-series analysis is the choice of an appropriate distance/similarity measure. Numerous measures have been proposed to date, with the most successful ones based on dynamic programming. Being of quadratic time complexity, however, global constraints are often employed to limit the search space in the matrix during the dynamic programming procedure, in order to speed up computation. Furthermore, it has been reported that such constrained measures can also achieve better accuracy. In this paper, we investigate two representative time-series distance/similarity measures based on dynamic programming, Dynamic Time Warping (DTW) and Longest Common Subsequence (LCS), and the effects of global constraints on them. Through extensive experiments on a large number of time-series data sets, we demonstrate how global constrains can significantly reduce the computation time of DTW and LCS. We also show that, if the constraint parameter is tight enough (less than 10-15% of time-series length), the constrained measure becomes significantly different from its unconstrained counterpart, in the sense of producing qualitatively different 1-nearest neighbor graphs. This observation explains the potential for accuracy gains when using constrained measures, highlighting the need for careful tuning of constraint parameters in order to achieve a good trade-off between speed and accuracy

    Self-labeling techniques for semi-supervised time series classification: an empirical study

    Get PDF
    An increasing amount of unlabeled time series data available render the semi-supervised paradigm a suitable approach to tackle classification problems with a reduced quantity of labeled data. Self-labeled techniques stand out from semi-supervised classification methods due to their simplicity and the lack of strong assumptions about the distribution of the labeled and unlabeled data. This paper addresses the relevance of these techniques in the time series classification context by means of an empirical study that compares successful self-labeled methods in conjunction with various learning schemes and dissimilarity measures. Our experiments involve 35 time series datasets with different ratios of labeled data, aiming to measure the transductive and inductive classification capabilities of the self-labeled methods studied. The results show that the nearest-neighbor rule is a robust choice for the base classifier. In addition, the amending and multi-classifier self-labeled-based approaches reveal a promising attempt to perform semi-supervised classification in the time series context

    Uloga mera sličnosti u analizi vremenskih serija

    Get PDF
    The subject of this dissertation encompasses a comprehensive overview and analysis of the impact of Sakoe-Chiba global constraint on the most commonly used elastic similarity measures in the field of time-series data mining with a focus on classification accuracy. The choice of similarity measure is one of the most significant aspects of time-series analysis  -  it should correctly reflect the resemblance between the data presented in the form of time series. Similarity measures represent a critical component of many tasks of mining time series, including: classification, clustering, prediction, anomaly detection, and others. The research covered by this dissertation is oriented on several issues: 1.  review of the effects of  global constraints on the performance of computing similarity measures, 2.  a detailed analysis of the influence of constraining the elastic similarity measures on the accuracy of classical classification techniques, 3.  an extensive study of the impact of different weighting schemes on the classification of time series, 4.  development of an open source library that integrates the main techniques and methods required for analysis and mining time series, and which is used for the realization of these experimentsPredmet istraživanja ove disertacije obuhvata detaljan pregled i analizu uticaja Sakoe-Chiba globalnog ograničenja na najčešće korišćene elastične mere sličnosti u oblasti data mining-a vremenskih serija sa naglaskom na tačnost klasifikacije. Izbor mere sličnosti jedan je od najvažnijih aspekata analize vremenskih serija  -  ona treba  verno reflektovati sličnost između podataka prikazanih u obliku vremenskih serija.  Mera sličnosti predstavlјa kritičnu komponentu mnogih zadataka  mining-a vremenskih serija, uklјučujući klasifikaciju, grupisanje (eng.  clustering), predviđanje, otkrivanje anomalija i drugih. Istraživanje obuhvaćeno ovom disertacijom usmereno je na nekoliko pravaca: 1.  pregled efekata globalnih ograničenja na performanse računanja mera sličnosti, 2.  detalјna analiza posledice ograničenja elastičnih mera sličnosti na tačnost klasifikacije klasičnih tehnika klasifikacije, 3.  opsežna studija uticaj različitih načina računanja težina (eng. weighting scheme) na klasifikaciju vremenskih serija, 4.  razvoj biblioteke otvorenog koda (Framework for Analysis and Prediction  -  FAP) koja će integrisati glavne tehnike i metode potrebne za analizu i mining  vremenskih serija i koja je korišćena za realizaciju ovih eksperimenata.Predmet istraživanja ove disertacije obuhvata detaljan pregled i analizu uticaja Sakoe-Chiba globalnog ograničenja na najčešće korišćene elastične mere sličnosti u oblasti data mining-a vremenskih serija sa naglaskom na tačnost klasifikacije. Izbor mere sličnosti jedan je od najvažnijih aspekata analize vremenskih serija  -  ona treba  verno reflektovati sličnost između podataka prikazanih u obliku vremenskih serija.  Mera sličnosti predstavlja kritičnu komponentu mnogih zadataka  mining-a vremenskih serija, uključujući klasifikaciju, grupisanje (eng.  clustering), predviđanje, otkrivanje anomalija i drugih. Istraživanje obuhvaćeno ovom disertacijom usmereno je na nekoliko pravaca: 1.  pregled efekata globalnih ograničenja na performanse računanja mera sličnosti, 2.  detaljna analiza posledice ograničenja elastičnih mera sličnosti na tačnost klasifikacije klasičnih tehnika klasifikacije, 3.  opsežna studija uticaj različitih načina računanja težina (eng. weighting scheme) na klasifikaciju vremenskih serija, 4.  razvoj biblioteke otvorenog koda (Framework for Analysis and Prediction  -  FAP) koja će integrisati glavne tehnike i metode potrebne za analizu i mining  vremenskih serija i koja je korišćena za realizaciju ovih eksperimenata

    Indexing and Retrieval of 3D Articulated Geometry Models

    Get PDF
    In this PhD research study, we focus on building a content-based search engine for 3D articulated geometry models. 3D models are essential components in nowadays graphic applications, and are widely used in the game, animation and movies production industry. With the increasing number of these models, a search engine not only provides an entrance to explore such a huge dataset, it also facilitates sharing and reusing among different users. In general, it reduces production costs and time to develop these 3D models. Though a lot of retrieval systems have been proposed in recent years, search engines for 3D articulated geometry models are still in their infancies. Among all the works that we have surveyed, reliability and efficiency are the two main issues that hinder the popularity of such systems. In this research, we have focused our attention mainly to address these two issues. We have discovered that most existing works design features and matching algorithms in order to reflect the intrinsic properties of these 3D models. For instance, to handle 3D articulated geometry models, it is common to extract skeletons and use graph matching algorithms to compute the similarity. However, since this kind of feature representation is complex, it leads to high complexity of the matching algorithms. As an example, sub-graph isomorphism can be NP-hard for model graph matching. Our solution is based on the understanding that skeletal matching seeks correspondences between the two comparing models. If we can define descriptive features, the correspondence problem can be solved by bag-based matching where fast algorithms are available. In the first part of the research, we propose a feature extraction algorithm to extract such descriptive features. We then convert the skeletal matching problems into bag-based matching. We further define metric similarity measure so as to support fast search. We demonstrate the advantages of this idea in our experiments. The improvement on precision is 12\% better at high recall. The indexing search of 3D model is 24 times faster than the state of the art if only the first relevant result is returned. However, improving the quality of descriptive features pays the price of high dimensionality. Curse of dimensionality is a notorious problem on large multimedia databases. The computation time scales exponentially as the dimension increases, and indexing techniques may not be useful in such situation. In the second part of the research, we focus ourselves on developing an embedding retrieval framework to solve the high dimensionality problem. We first argue that our proposed matching method projects 3D models on manifolds. We then use manifold learning technique to reduce dimensionality and maximize intra-class distances. We further propose a numerical method to sub-sample and fast search databases. To preserve retrieval accuracy using fewer landmark objects, we propose an alignment method which is also beneficial to existing works for fast search. The advantages of the retrieval framework are demonstrated in our experiments that it alleviates the problem of curse of dimensionality. It also improves the efficiency (3.4 times faster) and accuracy (30\% more accurate) of our matching algorithm proposed above. In the third part of the research, we also study a closely related area, 3D motions. 3D motions are captured by sticking sensor on human beings. These captured data are real human motions that are used to animate 3D articulated geometry models. Creating realistic 3D motions is an expensive and tedious task. Although 3D motions are very different from 3D articulated geometry models, we observe that existing works also suffer from the problem of temporal structure matching. This also leads to low efficiency in the matching algorithms. We apply the same idea of bag-based matching into the work of 3D motions. From our experiments, the proposed method has a 13\% improvement on precision at high recall and is 12 times faster than existing works. As a summary, we have developed algorithms for 3D articulated geometry models and 3D motions, covering feature extraction, feature matching, indexing and fast search methods. Through various experiments, our idea of converting restricted matching to bag-based matching improves matching efficiency and reliability. These have been shown in both 3D articulated geometry models and 3D motions. We have also connected 3D matching to the area of manifold learning. The embedding retrieval framework not only improves efficiency and accuracy, but has also opened a new area of research

    Advances on Time Series Analysis using Elastic Measures of Similarity

    Get PDF
    A sequence is a collection of data instances arranged in a structured manner. When this arrangement is held in the time domain, sequences are instead referred to as time series. As such, each observation in a time series represents an observation drawn from an underlying process, produced at a specific time instant. However, other type of data indexing structures, such as space- or threshold-based arrangements are possible. Data points that compose a time series are often correlated with each other. To account for this correlation in data mining tasks, time series are usually studied as a whole data object rather than as a collection of independent observations. In this context, techniques for time series analysis aim at analyzing this type of data structures by applying specific approaches developed to leverage intrinsic properties of the time series for a wide range of problems, such as classification, clustering and other tasks alike. The development of monitoring and storage devices has made time se- ries analysis proliferate in numerous application fields, including medicine, economics, manufacturing and telecommunications, among others. Over the years, the community has gathered efforts towards the development of new data-based techniques for time series analysis suited to address the problems and needs of such application fields. In the related literature, such techniques can be divided in three main groups: feature-, model- and distance-based methods. The first group (feature-based) transforms time series into a collection of features, which are then used by conventional learning algorithms to provide solutions to the task under consideration. In contrast, methods belonging to the second group (model-based) assume that each time series is drawn from a generative model, which is then har- nessed to elicit knowledge from data. Finally, distance-based techniques operate directly on raw time series. To this end, these methods resort to specially defined measures of distance or similarity for comparing time series, without requiring any further processing. Among them, elastic sim- ilarity measures (e.g., dynamic time warping and edit distance) compute the closeness between two sequences by finding the best alignment between them, disregarding differences in time, and thus focusing exclusively on shape differences. This Thesis presents several contributions to the field of distance-based techniques for time series analysis, namely: i) a novel multi-dimensional elastic similarity learning method for time series classification; ii) an adap- tation of elastic measures to streaming time series scenarios; and iii) the use of distance-based time series analysis to make machine learning meth- ods for image classification robust against adversarial attacks. Throughout the Thesis, each contribution is framed within its related state of the art, explained in detail and empirically evaluated. The obtained results lead to new insights on the application of distance-based time series methods for the considered scenarios, and motivates research directions that highlight the vibrant momentum of this research area

    Advances on Time Series Analysis using Elastic Measures of Similarity

    Get PDF
    135 p.A sequence is a collection of data instances arranged in an structured manner. When thisarrangement is held in the time domain, sequences are instead referred to as time series. As such,each observation in a time series represents an observation drawn from an underlying process,produced at a specific time instant. However, other type of data indexing structures, such as spaceorthreshold-based arrangements are possible. Data points that compose a time series are oftencorrelated to each other. To account for this correlation in data mining tasks, time series are usuallystudied as a whole data object rather than as a collection of independent observations. In thiscontext, techniques for time series analysis aim at analyzing this type of data structures by applyingspecific approaches developed to harness intrinsic properties of the time series for a wide range ofproblems such as, classification, clustering and other tasks alike.The development of monitoring and storage devices has made time series analysisproliferate in numerous application fields including medicine, economics, manufacturing andtelecommunications, among others. Over the years, the community has gathered efforts towards thedevelopment of new data-based techniques for time series analysis suited to address the problemsand needs of such application fields. In the related literature, such techniques can be divided in threemain groups: feature-, model- and distance- based methods. The first group (feature-based)transforms time series into a collection of features, which are then used by conventional learningalgorithms to provide solutions to the task under consideration. In contrast, methods belonging to thesecond group (model-based) assume that each time series is drawn from a generative model, whichis then harnessed to elicit information from data. Finally, distance-based techniques operate directlyon raw time series. To this end, these latter methods resort to specially defined measures of distanceor similarity for comparing time series, without requiring any further processing. Among them,elastic similarity measures (e.g., dynamic time warping and edit distance) compute the closenessbetween two sequences by finding the best alignment between them, disregarding differences intime gaps and thus focusing exclusively on shape differences.This Thesis presents several contributions to the field of distance-based techniques for timeseries analysis, namely: i) a novel multi-dimensional elastic similarity learning method for timeseries classification; ii) an adaptation of elastic measures to streaming time series scenarios; and iii)the use of distance-based time series analysis to make machine learning methods for imageclassification robust against adversarial attacks. Throughout the Thesis, each contribution is framedwithin its related state of the art, explained in detail and empirically evaluated. The obtained resultslead to new insights on the application of distance-based time series methods for the consideredscenarios, and motivates research directions that highlight the vibrant momentum of this researcharea

    Self-labeling techniques for semi-supervised time series classification: an empirical study

    Get PDF
    An increasing amount of unlabeled time series data available render the semi-supervised paradigm a suitable approach to tackle classification problems with a reduced quantity of labeled data. Self-labeled techniques stand out from semi-supervised classification methods due to their simplicity and the lack of strong assumptions about the distribution of the labeled and unlabeled data. This paper addresses the relevance of these techniques in the time series classification context by means of an empirical study that compares successful self-labeled methods in conjunction with various learning schemes and dissimilarity measures. Our experiments involve 35 time series datasets with different ratios of labeled data, aiming to measure the transductive and inductive classification capabilities of the self-labeled methods studied. The results show that the nearest-neighbor rule is a robust choice for the base classifier. In addition, the amending and multi-classifier self-labeled-based approaches reveal a promising attempt to perform semi-supervised classification in the time series context

    An evaluation of equity premium prediction using multiple kernel learning with financial features

    Get PDF
    This paper introduces and extensively explores a forecasting procedure based on multivariate dynamic kernels to re-examine –under a non-linearframework– the experimental tests reported by Welch and Goyal (Review of Financial Studies 21(4),1455-1508, 2008) showing that several variables proposed in the finance literature are of no use as exogenous information to predict the equity premium under linear regressions. For this non-linear approach to equity premium forecasting, kernel functions for time series are used with multiple kernel learning(MKL) in order to represent the relative importance of each of the variables. We find that, in general, the predictive capabilities of the MKL models do not improve consistently with the use of some or all of the variables, nor does the predictability by single kernels, as determined by different resampling procedures that we implement and compare. This fact tends to corroborate the instability already observed by Welch and Goyal for the predictive power of exogenous variables, now in a non-linear modelling frameworkPeer ReviewedPostprint (author's final draft
    corecore