50,183 research outputs found

    A Teacher in the Living Room? Educational Media for Babies, Toddlers, and Preschoolers

    Get PDF
    Examines available research, and arguments by proponents and critics, of electronic educational media use by young children. Examines educational claims in marketing and provides recommendations for developing research and product standards

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap

    ICT in schools 2008-11 : an evaluation of information and communication technology education in schools in England 2008–11

    Get PDF

    Advances in Teaching & Learning Day Abstracts 2005

    Get PDF
    Proceedings of the Advances in Teaching & Learning Day Regional Conference held at The University of Texas Health Science Center at Houston in 2005

    The importance of ICT: Information and communication technology in primary and secondary schools, 2005/2008

    Get PDF

    Teaching Electronics and Programming in Norwegian Schools Using the air:bit Sensor Kit

    Full text link
    We describe lessons learned from using the air:bit project to introduce more than 150 students in the Norwegian upper secondary school to computer programming, engineering and environmental sciences. In the air:bit project, students build and code a portable air quality sensor kits, and use their air:bit to collect data to investigate patterns in air quality in their local environment. When the project ended students had collected more than 400,000 measurements with their air:bit kits, and could describe local patterns in air quality. Students participate in all parts of the project, from soldering components and programming the sensors, to analyzing the air quality measurements. We conducted a survey after the project and describe our lessons learned from the project. The results show that the project successfully taught the students fundamental concepts in computer programming, electronics, and the scientific method. In addition, all the participating teachers reported that their students had showed good learning outcomes

    Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies

    Get PDF
    A systematic search of the research literature from 1996 through July 2008 identified more than a thousand empirical studies of online learning. Analysts screened these studies to find those that (a) contrasted an online to a face-to-face condition, (b) measured student learning outcomes, (c) used a rigorous research design, and (d) provided adequate information to calculate an effect size. As a result of this screening, 51 independent effects were identified that could be subjected to meta-analysis. The meta-analysis found that, on average, students in online learning conditions performed better than those receiving face-to-face instruction. The difference between student outcomes for online and face-to-face classes—measured as the difference between treatment and control means, divided by the pooled standard deviation—was larger in those studies contrasting conditions that blended elements of online and face-to-face instruction with conditions taught entirely face-to-face. Analysts noted that these blended conditions often included additional learning time and instructional elements not received by students in control conditions. This finding suggests that the positive effects associated with blended learning should not be attributed to the media, per se. An unexpected finding was the small number of rigorous published studies contrasting online and face-to-face learning conditions for K–12 students. In light of this small corpus, caution is required in generalizing to the K–12 population because the results are derived for the most part from studies in other settings (e.g., medical training, higher education)

    The Effectiveness of Aural Instructions with Visualisations in E-Learning Environments

    Get PDF
    Based on Mayer’s (2001) model for more effective learning by exploiting the brain’s dual sensory channels for information processing, this research investigates the effectiveness of using aural instructions together with visualisation in teaching the difficult concepts of data structures to novice computer science students. A small number of previous studies have examined the use of audio and visualisation in teaching and learning environments but none has explored the integration of both technologies in teaching data structures programming to reduce the cognitive load on learners’ working memory. A prototype learning tool, known as the Data Structure Learning (DSL) tool, was developed and used first in a short mini study that showed that, used together with visualisations of algorithms, aural instructions produced faster student response times than did textual instructions. This result suggested that the additional use of the auditory sensory channel did indeed reduce the cognitive load. The tool was then used in a second, longitudinal, study over two academic terms in which students studying the Data Structures module were offered the opportunity to use the DSL approach with either aural or textual instructions. Their use of the approach was recorded by the DSL system and feedback was invited at the end of every visualisation task. The collected data showed that the tool was used extensively by the students. A comparison of the students’ DSL use with their end-of-year assessment marks revealed that academically weaker students had tended to use the tool most. This suggests that less able students are keen to use any useful and available instrument to aid their understanding, especially of difficult concepts. Both the quantitative data provided by the automatic recording of DSL use and an end-of-study questionnaire showed appreciation by students of the help the tool had provided and enthusiasm for its future use and development. These findings were supported by qualitative data provided by student written feedback at the end of each task, by interviews at the end of the experiment and by interest from the lecturer in integrating use of the tool with the teaching of the module. A variety of suggestions are made for further work and development of the DSL tool. Further research using a control group and/or pre and post tests would be particularly useful
    corecore