301 research outputs found

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF
    Multi-frequency and multi-GNSS measurements from modernized satellites are properly integrated for PPP with ambiguity resolution to achieve the state-of-the-art fast and accurate positioning, which provides an important contribution to GNSS precise positioning and applications. The multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution, which is accomplished by a unified model based on the uncombined PPP, are thoroughly evaluated with special focus on Galileo and BDS

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF
    Multi-frequency and multi-GNSS measurements from modernized satellites are properly integrated for PPP with ambiguity resolution to achieve the state-of-the-art fast and accurate positioning, which provides an important contribution to GNSS precise positioning and applications. The multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution, which is accomplished by a unified model based on the uncombined PPP, are thoroughly evaluated with special focus on Galileo and BDS

    Multi-GNSS integer ambiguity resolution enabled precise positioning

    Get PDF
    In this PhD thesis multi-Global Navigation Satellite System (GNSS) positioning results when combining the American Global Positioning System (GPS), Chinese BeiDou Navigation Satellite System (BDS), European Galileo and Japanese Quasi-Zenith Satellite System (QZSS) will be presented. The combined systems will be evaluated in comparison to the single-systems, for short (atmosphere-fixed) to long (atmosphere-present) baselines. It will be shown that the combined systems can provide for improved integer ambiguity resolution and positioning performance over the single-systems

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    Das Verfahren des GNSS Precise Point Positioning unter Anwendung des Ă„quivalenzprinzips

    Get PDF
    In the last decade Precise Point Positioning (PPP) has become a powerful and widely used technique for positioning by means of Global Navigation Satellite System (GNSS) in geodetic/scientific and civil/daily applications. Meanwhile, the equivalence principle of GNSS data processing has been developed and can now be easily explained and accepted since it was firstly algebraically pointed out in 2002. The objective of this thesis is to explore high-performance PPP algorithms and to develop GNSS algorithms with application of the equivalence principle. The core research and contributions of this thesis are summarized as follows. In this thesis it is the first time that the specific equivalence of un-differenced and time differencing PPP algorithms is proved theoretically on the basis of the equivalence principle and the equivalence property of un-differenced and differencing algorithms. Meanwhile, as a supplement to the equivalence property of the triple differences, an alternative method is proposed and derived to prove the equivalence between triple differences and zero-difference which up to now was missing. As a consequence of above conducted theoretical study, a time differencing PPP algorithm based on the equivalence principle is derived and can be used to obtain the coordinates difference and average velocity between two adjacent epochs. Such a time differencing PPP algorithm is able to provide both position and velocity results from the phase and code observations and is expected to be beneficial for applications, such as airborne gravimetry or earthquake monitoring, and could also be an efficient method to detect cycle slips in data processing. The influence of tropospheric delay on PPP, especially in the context of observations in the polar region or with low elevation cut-off angles, where the position results of the observations are more significantly affected by tropospheric delay, is analyzed and a methodology for minimizing its effect is proposed. Actual meteorological data are used and proved to be beneficial for improving PPP precision in the Antarctic region. The effect of tropospheric horizontal gradient correction on PPP is also analyzed and verified to remarkably improve PPP precision under lower elevation cut-off angles and higher humidity conditions. A priori constrained PPP algorithms are proposed and derived in this thesis to improve the efficiency and precision of PPP. The a priori information concerning the geometric and physical properties of observations, which is known with a certain a priori precision, is applied in the PPP algorithms. The contribution of different a priori information constraints on different parameters to PPP solution is analyzed and validated. The a priori constraints as employed in the PPP are specified according to coordinates-, receiver clock offset-, tropospheric delay- and ambiguities-constraints, respectively. The validation of the derived PPP algorithms shows a significant improvement concerning convergence time and positioning accuracy. Moreover, the applications of different constraints under specific conditions are discussed and validated. A multi-constellation combined PPP algorithm based on the equivalence principle is proposed and derived in this thesis. With such an algorithm, the exponentially increased computational load of the traditional multi-GNSS PPP algorithm can be reduced to the single linear increase when more GNSS satellites are available and used for combined computation. In case of GPS/BDS combination, a method which can speed up the determination of the ambiguities parameters of BDS through applying the contribution of GPS observations is proposed to significantly reduce the convergence time in BDS PPP. The GPS/BDS combined PPP algorithm with inter-system bias (ISB) parameter is also derived. Using the estimated ISB as a priori constraint in the GPS/BDS combined PPP is proposed. The result demonstrates that the a priori constraint of ISB shows superiority in the convergence time of PPP processing and can mainly improve the positioning accuracy in E component. In traditional combined PPP it is difficult to adaptively adjust the contribution of each single system to the combination through constructing total calculation, and it will lead to the deterioration in the combination accuracy. In this context, the adaptively combined PPP algorithms based on the equivalence principle are proposed and derived, which can easily achieve an adaptive adjustment of weight ratio of each system in the multi-GNSS combination. By using the posteriori covariance matrix of the shared parameters of each single system and the Helmert variance components to adaptively adjust the weight ratio of each system, the derived algorithms can improve the accuracy of combination significantly, compared to combined PPP with identical weight ratio. The developed algorithms are net applicable and can be used for cloud computation for internet GNSS service which is considered relevant for possible commercial applications.In den letzten zehn Jahren entwickelte sich das Verfahren des Precise Point Positioning (PPP) zu einer leistungsstarken und weit verbreiteten Technik in der Positionsbestimmung mittels des Global Navigation Satellite System (GNSS) in geodätischen/wissenschaftlichen und zivilen/täglichen Anwendungen. Ein wichtiges Grundprinzip der GNSS-Datenverarbeitung ist das Äquivalenzprinzip der GNSS-Datenverarbeitung, das 2002 erstmals beschrieben wurde. Das Ziel dieser Arbeit ist die Untersuchung von Hochleistungs-PPP-Algorithmen und die Entwicklung von GNSS-Algorithmen unter Anwendung des Äquivalenzprinzips. Der Kern der Untersuchungen und die Beiträge dieser Arbeit lassen sich wie folgt zusammengefassen. Aufbauend auf dem Äquivalenzprinzip und den Äquivalenz-Eigenschaften von nicht-differenzierenden und differenzierenden GNSS-Algorithmen wird in dieser Arbeit zum ersten Mal die spezifische Gleichwertigkeit von nicht-differenzierenden und zeitdifferenzierenden PPP-Algorithmen theoretisch bewiesen. In diesem Zusammenhang beschreiben wir – als Ergänzung zu den Äquivalenz-Eigenschaften der Tripel-Differenzen - eine bis jetzt noch nicht existierende alternative Methode zum Beweis der Äquivalenz von Tripel-Differenzen und undifferenzierten Beobachtungen. Aufbauend auf der oben erwähnten theoretischen Untersuchung wurde ein zeitlich differenzierender PPP-Algorithmus abgeleitet, der auf dem Äquivalenzprinzip beruht und der dazu benutzt werden kann, die Koordinatendifferenz und die mittlere Geschwindigkeit zwischen benachbarten Beobachtungszeitpunkten zu bestimmen. Ein solcher zeitlich differenzierender PPP-Algorithmus ist in der Lage, sowohl Position als auch Geschwindigkeit aus Phasen- und Code-Beobachtungen zu liefern. Dieser Algorithmus sollte für Anwendungen wie Fluggravimetrie oder Erdbeben-Überwachung nützlich sein und stellt eine effiziente Methode zur Erkennung von Cycle-Slips dar. Diese Arbeit umfasst auch Analysen des Einflusses der Troposphärischen Signalverzögerung auf das PPP, vor allem im Blick mit Beobachtungen in den Polarregionen oder im Fall niedriger Höhengrenzwinkel (sog. Cut-off-Winkel), wo die Positionsbestimmung sehr stark von der Troposphärischen Signalverzögerung beeinflusst ist. In diesem Zusammenhang wird eine Methodologie zur Minimierung des Troposphäreneinflusses vorgeschlagen. Es werden reale meteorologische Daten verwendet und es wird gezeigt, dass dies zur Verbesserung der Präzision des PPP in antarktischen Regionen von Vorteil ist. Außerdem wird der Effekt der troposphärischen Horizontalgradienten-Korrektur analysiert und es wurde bewiesen, dass diese Methode zu einer deutlichen Verbesserung des PPP im Fall niedriger Cut-off-Winkel und hoher Luftfeuchtigkeit führt. In dieser Arbeit werden PPP-Algorithmen mit A-priori-Nebenbedingungen (sog. Constraint) vorgeschlagen und abgeleitet, um die Effizienz und Präzision des PPP zu verbessern. Die in den PPP-Algorithmen angewandten A-priori-Informationen betreffen die geometrischen und physikalischen Eigenschaften von Beobachtungen, von denen vorab eine bestimmte Genauigkeit bekannt ist. Der Einfluss von verschiedenen A-priori-Nebenbedingungen auf verschiedene Parameter innerhalb der PPP-Lösung wird analysiert und validiert. Diese in den PPP-Algorithmen angewandten A-priori-Bedingungen sind aus Nebenbedingungen für Koordinaten, Empängeruhren-Offsets, Troposphären-Verzögerung und Ambiguities abgeleitet. Die Validierung dieser Algorithmen zeigt eine deutliche Verbesserung bezüglich der Konvergenzzeit und der Genauigkeit in der Positionsbestimmung. Ferner wird die Anwendung verschiedener Constraints unter spezifischen Bedingungen diskutiert unf validiert. In dieser Arbeit wurde ein kombinierter PPP-Algorithmus für Multi-Satellitensysteme vorgeschlagen und abgeleitet, der auf dem genannten Äquivalenzprinzip beruht. Mit einem solchen Algorithmus kann die exponentiell ansteigende Computerlast des traditionellen Multi-GNSS-PPP dahingehend reduziert werden, dass es nur einen einfachen linearen Anstieg gibt, wenn mehr GNSS-Satelliten einbezogen werden. Für den Fall der Kombination von GPS mit dem chinesischen Beidou-System (BDS) wird eine Methode vorgeschlagen, die die Berechnung der Ambiguity-Parameter für das BDS-System durch Beitrag von GPS-Beobachtungen schneller beschleunigt. Diese Methode reduziert die Konvergenzzeit im BDS-PPP deutlich. Außerdem wird im Fall der Kombination von GPS und BDS ein Inter-System-Bias (ISB) abgeleitet. Es wird vorgeschlagen, diesen ISB als A-priori-Nebenbedingung in das PPP bei der Kombination von GPS und BDS einzuführen. Dadurch ergeben sich überlegene Resultate für die Konvergenzzeit in der PPP-Prozessierung und die Positionsgenauigkeit in der Ost-Komponente kann verbessert werden. Im traditionellen kombinierten PPP-Verfahren ist es schwierig, den Beitrag jedes einzelnen Systems zur Kombination durch Konstruktion einer Gesamtlösung adaptiv anzugleichen, was zur Verschlechterung in der Kombinationsgenauigkeit führt. In diesem Zusammenhang wurde ein adaptiv kombinierter PPP-Algorithmus vorgeschlagen und entwickelt, der auf dem Äquivalenzprinzip beruht. Dieser Algorithmus ermöglicht eine einfache adaptive Ausgleichung der relativen Wichtungen für jedes Satelliten-System in der Multi-GNSS-Kombination. Durch Nutzung der a-posteriori Kovarianz-Matrix, die für alle gemeinsamen Parameter der einzelnen Satelliten-Systeme aufgestellt wurde und durch die Anwendung der Helmertschen Varianzkomponenten-Schätzung zur adaptiven Ausgleichung der relativen Wichtungen der einzelnen Systeme kann die Genauigkeit der Kombination im Vergleich zum PPP mit identischen Relativgewichten deutlich gesteigert werden. Die entwickelten Algorithmen sind über das Internet anwendbar und könnten für Cloud-Berechnungen im Rahmen eines Internet-GNSS-Dienstes verwendet werden, was für mögliche kommerzielle Anwendungen von Bedeutung sein könnte

    Undifferenced and Uncombined GNSS Time Transfer and its Space Applications

    Get PDF
    This thesis presents a framework for developing a state-of-the-art undifferenced and uncombined (UDUC) time transfer technique for space applications. It addresses challenges in GNSS time transfer, such as multi-frequency signal modelling, satellite clock estimation, and hardware delay variations. The thesis introduces the UDUC POD method for GNSS time transfer in space and explores the feasibility of constructing a LEO-based space-time reference. This PhD dissertation is among the first to investigate the UDUC GNSS time transfer

    Improving Reliability and Assessing Performance of Global Navigation Satellite System Precise Point Positioning Ambiguity Resolution

    Get PDF
    Conventional Precise Point Positioning (PPP) has always required a relatively long initialization period (few tens of minutes at least) for the carrier-phase ambiguities to converge to constant values and for the solution to reach its optimal precision. The classical PPP convergence period is primarily caused by the estimation of the carrier-phase ambiguity from the relatively noisy pseudoranges and the estimation of atmospheric delay. If the underlying integer nature of the ambiguity is known, it can be resolved, thereby reducing the convergence time of conventional PPP. To recover the underlying integer nature of the carrier-phase ambiguities, different strategies for mitigating the satellite and receiver dependent equipment delays have been developed, and products made publicly available to enable ambiguity resolution without any baseline restrictions. There has been limited research within the scope of interoperability of the products, combining the products to improve reliability and assessment of ambiguity resolution within the scope of being an integrity indicator. This study seeks to develop strategies to enable each of these and examine their feasibility. The advantage of interoperability of the different PPP ambiguity resolution (PPP-AR) products would be to permit the PPP user to transform independently generated PPP-AR products to obtain multiple fixed solutions of comparable precision and accuracy. The ability to provide multiple solutions would increase the reliability of the solution for, e.g., real-time processing: if there were an outage in the generation of the PPP-AR products, the user could instantly switch streams to a different provider. The satellite clock combinations routinely produced within the International GNSS Service (IGS) currently disregard that analysis centers (ACs) provide products which enable ambiguity resolution. Users have been expected to choose either an IGS product which is a combined product from multiple ACs or select an individual AC solution which provides products that enable PPP-AR. The goal of the novel research presented was to develop and test a robust satellite clock combination preserving the integer nature of the carrier-phase ambiguities at the user end. mm-level differences were noted, which was expected as the strength lies mainly in its reliability and stable median performance and the combined product is better than or equivalent to any single ACs product in the combination process. As have been shown in relative positioning and PPP-AR, ambiguity resolution is critical for enabling cm-level positioning. However, what if specifications where at the few dm-level, such as 10 cm and 20 cm horizontal what role does ambiguity resolution play? The role of ambiguity resolution relies primarily on what are the user specifications. If the user specifications are at the few cm-level, ambiguity resolution is an asset as it improves convergence and solution stability. Whereas, if the users specification is at the few dm-level, ambiguity resolution offers limited improvement over the float solution. If the user has the resources to perform ambiguity resolution, even when the specifications are at the few dm-level, it should be utilized

    Combining VGOS, legacy S/X and GNSS for the determination of UT1

    Get PDF
    We perform a combination on the observation level (COL) between VLBI and co-located GNSS in the context of VLBI intensive sessions. Our approach revolves around an estimation procedure which uses 3 h of GNSS data that uniformly encapsulate the 1-h VLBI data, in order to provide consistent troposphere information. We test this approach on both VGOS and Legacy S/X using the VGOS-B and concurrently observed INT1 sessions. The COL strategy is found to increase the precision by 15 % over both session types and leads to an increase of 65 % in the agreement between the sessions when estimating tropospheric gradients every 3 h. A more frequent estimation of the gradients every 1 h, which can be rigorously pursued with the utilization of multi-GNSS, results in a further convergence of the two session types by 30 %. The COL-aided length-of-day (LOD) products also show a 55 % better agreement to external GNSS-derived LOD. In the light of the increasing precision of broadcast GNSS orbits and clocks, this COL strategy can be used to derive rapid UT1-UTC products
    • …
    corecore