160 research outputs found

    Connectivity, throughput, and end-to-end latency in infrastructureless wireless Networks with beamforming-enabled devices

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 181-188).Infrastructureless wireless networks are an important class of wireless networks best fitted to operational situations with temporary, localized demand for communication ability. These networks are composed of wireless communication devices that autonomously form a network without the need for pre-deployed infrastructure such as wireless base-stations and access points. Significant research and development has been devoted to mobile ad hoc wireless networks (MANETs) in the past decade, a particular infrastructureless wireless network architecture. While MANETs are capable of autonomous network formation and multihop routing, the practical adoption of this technology has been limited since these networks are not designed to support more than about thirty users or to provide the quality of service (QoS) assurance required by many of the envisioned driving applications for infrastructureless wireless networks. In particular, communication during disaster relief efforts or tactical military operations requires guaranteed network service capabilities for mission-critical, time-sensitive data and applications. MANETs may be frequently disconnected due to device mobility and mismatches between routing and transport layer protocols, making them unsuitable for these scenarios. Network connectivity is fundamentally important to a network designed to provide QoS guarantees to the end-user. Without network connectivity, at least one pair of devices in the network experiences zero sustainable data rate and infinite end-to-end message delay, a catastrophic condition during a search and rescue mission or in a battlefield. We consider the use of wireless devices equipped with beamforming-enabled antennas to expand deployment regimes in which there is a high probability of instantaneous connectivity and desirable network scalability. Exploiting the increased communication reach of directional antennas and electronic beam steering techniques in fixed rate systems, we characterize the probability of instantaneous connectivity for a finite number of nodes operating in a bounded region and identify required conditions to achieve an acceptably high probability of connectivity. Our analysis shows significant improvements to highly-connected regimes of operation with added antenna directivity. Following the characterization of instantaneous network connectivity, we analyze the achievable network throughput and scalability of both fixed and variable rate beamforming-enabled power-limited networks operating in a bounded region. Our study of the scaling behavior of the network is concerned with three QoS metrics of central importance for a system designed to provide service assurance to the end-user: achievable throughput, end-to-end delay (which we quantify as the number of end-to-end hops), and network energy consumption. We find that the infrastructureless wireless network can achieve scalable performance that is independent of end-user device density with high probability, as well as identify the existence of a system characteristic hopping distance for routing schemes that attain this scaling-optimal behavior. Our results also reveal achievable QoS performance gains from the inclusion of antenna directivity. Following these insights, we develop a scalable, heuristic geographic routing algorithm using device localization information and the characteristic hopping distance guideline that achieves sub-optimal but high network throughput in simulation.by Matthew F. Carey.S.M

    Design and evaluation of wireless dense networks : application to in-flight entertainment systems

    Get PDF
    Le réseau sans fil est l'un des domaines de réseautage les plus prometteurs avec des caractéristiques uniques qui peuvent fournir la connectivité dans les situations où il est difficile d'utiliser un réseau filaire, ou lorsque la mobilité des nœuds est nécessaire. Cependant, le milieu de travail impose généralement diverses contraintes, où les appareils sans fil font face à différents défis lors du partage des moyens de communication. De plus, le problème s'aggrave avec l'augmentation du nombre de nœuds. Différentes solutions ont été introduites pour faire face aux réseaux très denses. D'autre part, un nœud avec une densité très faible peut créer un problème de connectivité et peut conduire à l'optension de nœuds isolés et non connectes au réseau. La densité d'un réseau est définit en fonction du nombre de nœuds voisins directs au sein de la portée de transmission du nœud. Cependant, nous croyons que ces métriques ne sont pas suffisants et nous proposons une nouvelle mesure qui considère le nombre de voisins directs et la performance du réseau. Ainsi, la réponse du réseau, respectant l'augmentation du nombre de nœuds, est considérée lors du choix du niveau de la densité. Nous avons défini deux termes: l'auto-organisation et l'auto-configuration, qui sont généralement utilisés de façon interchangeable dans la littérature en mettant en relief la différence entre eux. Nous estimons qu'une définition claire de la terminologie peut éliminer beaucoup d'ambiguïté et aider à présenter les concepts de recherche plus clairement. Certaines applications, telles que Ies systèmes "In-Flight Entertainment (IFE)" qui se trouvent à l'intérieur des cabines d'avions, peuveut être considérées comme des systèmes sans fil de haute densité, même si peu de nœuds sont relativement présents. Pour résoudre ce problème, nous proposons une architecture hétérogène de différentes technologies à fin de surmonter les contraintes spécifiques de l'intérieur de la cabine. Chaque technologie vise à résoudre une partie du problème. Nous avons réalisé diverses expérimentations et simulations pour montrer la faisabilité de l'architecture proposée. Nous avons introduit un nouveau protocole d'auto-organisation qui utilise des antennes intelligentes pour aider certains composants du système IFE; à savoir les unités d'affichage et leurs systèmes de commande, à s'identifier les uns les autres sans aucune configuration préliminaire. Le protocole a été conçu et vérifié en utilisant le langage UML, puis, un module de NS2 a été créé pour tester les différents scénarios.Wireless networking is one of the most challenging networking domains with unique features that can provide connectivity in situations where it is difficult to use wired networking, or when ! node mobility is required. However, the working environment us! ually im poses various constrains, where wireless devices face various challenges when sharing the communication media. Furthermore, the problem becomes worse when the number of nodes increase. Different solutions were introduced to cope with highly dense networks. On the other hand, a very low density can create a poor connectivity problem and may lead to have isolated nodes with no connection to the network. It is common to define network density according to the number of direct neighboring nodes within the node transmission range. However, we believe that such metric is not enough. Thus, we propose a new metric that encompasses the number of direct neighbors and the network performance. In this way, the network response, due to the increasing number of nodes, is considered when deciding the density level. Moreover, we defined two terms, self-organization and self-configuration, which are usually used interchangeably in the literature through highlighting the difference ! between them. We believe that having a clear definition for terminology can eliminate a lot of ambiguity and help to present the research concepts more clearly. Some applications, such as In-Flight Entertainment (IFE) systems inside the aircraft cabin, can be considered as wirelessly high dense even if relatively few nodes are present. To solve this problem, we propose a heterogeneous architecture of different technologies to overcome the inherited constrains inside the cabin. Each technology aims at solving a part of the problem. We held various experimentation and simulations to show the feasibility of the proposed architecture

    Supporting Large Scale Communication Systems on Infrastructureless Networks Composed of Commodity Mobile Devices: Practicality, Scalability, and Security.

    Full text link
    Infrastructureless Delay Tolerant Networks (DTNs) composed of commodity mobile devices have the potential to support communication applications resistant to blocking and censorship, as well as certain types of surveillance. In this thesis we study the utility, practicality, robustness, and security of these networks. We collected two sets of wireless connectivity traces of commodity mobile devices with different granularity and scales. The first dataset is collected through active installation of measurement software on volunteer users' own smartphones, involving 111 users of a DTN microblogging application that we developed. The second dataset is collected through passive observation of WiFi association events on a university campus, involving 119,055 mobile devices. Simulation results show consistent message delivery performances of the two datasets. Using an epidemic flooding protocol, the large network achieves an average delivery rate of 0.71 in 24 hours and a median delivery delay of 10.9 hours. We show that this performance is appropriate for sharing information that is not time sensitive, e.g., blogs and photos. We also show that using an energy efficient variant of the epidemic flooding protocol, even the large network can support text messages while only consuming 13.7% of a typical smartphone battery in 14 hours. We found that the network delivery rate and delay are robust to denial-of-service and censorship attacks. Attacks that randomly remove 90% of the network participants only reduce delivery rates by less than 10%. Even when subjected to targeted attacks, the network suffered a less than 10% decrease in delivery rate when 40% of its participants were removed. Although structurally robust, the openness of the proposed network introduces numerous security concerns. The Sybil attack, in which a malicious node poses as many identities in order to gain disproportionate influence, is especially dangerous as it breaks the assumption underlying majority voting. Many defenses based on spatial variability of wireless channels exist, and we extend them to be practical for ad hoc networks of commodity 802.11 devices without mutual trust. We present the Mason test, which uses two efficient methods for separating valid channel measurement results of behaving nodes from those falsified by malicious participants.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120779/1/liuyue_1.pd

    Tracking the path of a mobile radioactive source using a wireless sensor network

    Get PDF
    This report describes several experiments used to characterize and test a network of radiation sensors. The purpose of these tests is to assess the feasibility of using these sensors to detect and track radioactive sources in a large field, as in a battlefield or on a military campus. Simulated radiation measurements are used to compare the result of radiation detection accuracy in tracking the moving target and to find its path as early as possible. This is done via changing the number of sensing nodes deployed (deployment density), as well as the models of the detectors. This thesis describes algorithms for both detecting the presence and tracking the position of radioactive sources. It formulates the detection problem as a nonparametric hypothesis-testing problem that is solved by comparing a statistic computed over some window of observation of the data to a threshold value. If this threshold is exceeded then it is decided that a source is present. The tracking results thus found are compared with the actual chosen path within the implemented experiment. Detection delay has been measured while trading off battery consumption and accuracy

    Architecture and Protocols for Service and Application Deployment in Resource Aware Ubiquitous Environments

    Get PDF
    Realizing the potential of pervasive computing will be predicated upon the availability of a flexible, mobility-aware infrastructure and the technologies to support seamless service management, provisioning and delivery. Despite the advances in routing and media access control technologies, little progress has been made towards large-scale deployment of services and applications in pervasive and ubiquitous environments. The lack of a fixed infrastructure, coupled with the time-varying characteristics of the underlying network topology, make service delivery challenging. The goal of this research is to address the fundamental design issues of a service infrastructure for ubiquitous environments and provide a comprehensive solution which is robust, scalable, secure and takes into consideration node mobility and resource constraints. We discuss the main functionalities of the proposed architecture, describe the algorithms for registration and discovery and present a power-aware location-driven message forwarding algorithm to enable node interaction in this architecture. We also provide security schemes to ensure user privacy in this architecture. The proposed architecture was evaluated through theuse of simulations. The results show that the service architecture is scalable and robust, even when node mobility is high. The comparative analysis shows that our message forwarding algorithm consistently outperforms contemporary location-driven algorithms. Furthermore, thisresearch work was implemented as a proof-of-concept implementation and tested on a real world scenario

    Architecture and Methods for Innovative Heterogeneous Wireless Sensor Network Applications

    Get PDF
    Nowadays wireless sensor netwoks (WSN) technology, wireless communications and digital electronics have made it realistic to produce a large scale miniaturized devices integrating sensing, processing and communication capabilities. The focus of this paper is to present an innovative mobile platform for heterogeneous sensor networks, combined with adaptive methods to optimize the communication architecture for novel potential applications in multimedia and entertainment. In fact, in the near future, some of the applications foreseen for WSNs will employ multi-platform systems with a high number of different devices, which may be completely different in nature, size, computational and energy capabilities, etc. Nowadays, in addition, data collection could be performed by UAV platforms which can be a sink for ground sensors layer, acting essentially as a mobile gateway. In order to maximize the system performances and the network lifespan, the authors propose a recently developed hybrid technique based on evolutionary algorithms. The goal of this procedure is to optimize the communication energy consumption in WSN by selecting the optimal multi-hop routing schemes, with a suitable hybridization of different routing criteria. The proposed approach can be potentially extended and applied to ongoing research projects focused on UAV-based sensing with WSN augmentation and real-time processing for immersive media experiences

    Geographic location and geographic prediction performance benefits for infrastructureless wireless networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 173-176).The field of infrastructureless wireless networks (IWNs) is a broad and varied research area with a history of different assumption sets and methods of analysis. Much of the focus in the area of IWNs has been on connectivity and throughput/energy/delay (T/E/D) tradeoffs, which are important and valuable metrics. When specific IWN routing protocols are developed, they are often difficult to characterize analytically. In this thesis we review some of the important results in IWNs, in the process providing a comparison of wideband (power-limited) versus narrowband (interference-limited) networks. We show that the use of geographic location and geographic prediction (GL/GP) can dramatically increase the performance of IWNs. We compare past results in the context of GL/GP and develop new results in this area. We also develop the idea of throughput burden and scaling for the distribution of topology and routing information in IWNs and we hope that this work provides a context in which further research can be performed. We primarily focus our work on wideband networks while also reviewing some narrowband results. In particular, we focus on wideband networks with non-zero processing energy at the nodes, which combines with distance-dependent transmission energy as the other main source of power consumption in the network. Often the research in this area does not take into account processing energy, but there is previous work which shows that processing energy is an important consideration. The consideration of processing energy is the determining factor in whether a whisper to the nearest neighbor (WtNN) or characteristic hop distance routing scheme is optimal. Whisper to the nearest neighbor routing involves taking a large number of short hops, while characteristic hop distance routing is the scheme by which the optimal hop distance is based on the distance dependent transmission energy and the processing energy, as well as the attenuation exponent. For a one-dimensional network, we use a uniform all-to-all traffic model to determine the total hop count and achievable throughput for three routing types: WtNN without GL/GP, WtNN with GL/GP, and characteristic hop distance with GL/GP. We assume a fixed rate system and a random and uniform node distribution. The uniform all-to-all traffic model is the model where every node communicates with every other node at a specified rate. The achievable throughput is the achievable rate at which each source can send data to each of its destinations. The results we develop show that the performance difference between WtNN with and without GL/GP is minimal for one-dimensional networks. We show the reduction in hop count of characteristic hop distance routing compared to WtNN routing is significant. Further, the achievable throughput of characteristic hop distance routing is significantly better than that of WtNN networks. We present a method to determine the link rate scaling necessary for link state distribution to maintain topology and routing information in mobile IWNs. We developed several results, with the main result of rate scaling for two-dimensional networks where every node is mobile. We use a random chord mobility model to represent independent node movement. Our results show that in the absence of GL/GP, there is a significant network burden for maintaining topology and routing information at the network nodes. We also derive real world scaling results using the general analytic results and these results show the poor scaling of networks without GL/GP. For networks of 100 to 1000 nodes, the rate scaling for maintaining topology in mobile wireless networks is on the order of hundreds of megabits to gigabits per second. It is infeasible to use such significant amounts of data rate for the sole purpose of maintaining topology and routing information, and thus some other method of maintaining this information will need to be utilized. Given the growing number of devices connected to the Internet, in the future it is likely that IWNs will become more prevalent in society. Despite the significant amount of research to date, there is still much work to be done to determine the attributes of a realistic and scalable system. In order to ensure the scalability of future systems and decrease the amount of throughput necessary for network maintenance, it will be necessary for such systems to use geographic location and geographic prediction information.by Shane A. Fink.S.M

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs
    corecore