14 research outputs found

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    Motor patterns evaluation of people with neuromuscular disorders for biomechanical risk management and job integration/reintegration

    Get PDF
    Neurological diseases are now the most common pathological condition and the leading cause of disability, progressively worsening the quality of life of those affected. Because of their high prevalence, they are also a social issue, burdening both the national health service and the working environment. It is therefore crucial to be able to characterize altered motor patterns in order to develop appropriate rehabilitation treatments with the primary goal of restoring patients' daily lives and optimizing their working abilities. In this thesis, I present a collection of published scientific articles I co-authored as well as two in progress in which we looked for appropriate indices for characterizing motor patterns of people with neuromuscular disorders that could be used to plan rehabilitation and job accommodation programs. We used instrumentation for motion analysis and wearable inertial sensors to compute kinematic, kinetic and electromyographic indices. These indices proved to be a useful tool for not only developing and validating a clinical and ergonomic rehabilitation pathway, but also for designing more ergonomic prosthetic and orthotic devices and controlling collaborative robots

    Wearables for Movement Analysis in Healthcare

    Get PDF
    Quantitative movement analysis is widely used in clinical practice and research to investigate movement disorders objectively and in a complete way. Conventionally, body segment kinematic and kinetic parameters are measured in gait laboratories using marker-based optoelectronic systems, force plates, and electromyographic systems. Although movement analyses are considered accurate, the availability of specific laboratories, high costs, and dependency on trained users sometimes limit its use in clinical practice. A variety of compact wearable sensors are available today and have allowed researchers and clinicians to pursue applications in which individuals are monitored in their homes and in community settings within different fields of study, such movement analysis. Wearable sensors may thus contribute to the implementation of quantitative movement analyses even during out-patient use to reduce evaluation times and to provide objective, quantifiable data on the patients’ capabilities, unobtrusively and continuously, for clinical purposes

    Evaluating footwear “in the wild”: Examining wrap and lace trail shoe closures during trail running

    Get PDF
    Trail running participation has grown over the last two decades. As a result, there have been an increasing number of studies examining the sport. Despite these increases, there is a lack of understanding regarding the effects of footwear on trail running biomechanics in ecologically valid conditions. The purpose of our study was to evaluate how a Wrap vs. Lace closure (on the same shoe) impacts running biomechanics on a trail. Thirty subjects ran a trail loop in each shoe while wearing a global positioning system (GPS) watch, heart rate monitor, inertial measurement units (IMUs), and plantar pressure insoles. The Wrap closure reduced peak foot eversion velocity (measured via IMU), which has been associated with fit. The Wrap closure also increased heel contact area, which is also associated with fit. This increase may be associated with the subjective preference for the Wrap. Lastly, runners had a small but significant increase in running speed in the Wrap shoe with no differences in heart rate nor subjective exertion. In total, the Wrap closure fit better than the Lace closure on a variety of terrain. This study demonstrates the feasibility of detecting meaningful biomechanical differences between footwear features in the wild using statistical tools and study design. Evaluating footwear in ecologically valid environments often creates additional variance in the data. This variance should not be treated as noise; instead, it is critical to capture this additional variance and challenges of ecologically valid terrain if we hope to use biomechanics to impact the development of new products

    Proceedings SIAMOC 2019

    Get PDF
    Il congresso annuale della Società Italiana di Analisi del Movimento in Clinica, giunto quest'anno alla sua ventesima edizione, ritorna a Bologna, che già ospitò il terzo congresso nazionale nel 2002. Il legame tra Bologna e l'analisi del movimento è forte e radicato, e trova ampia linfa sia nel contesto accademico che nel ricco panorama di centri clinici d'eccellenza. Il congresso SIAMOC, come ogni anno, è l’occasione per tutti i professionisti dell’ambito clinico, metodologico ed industriale di incontrarsi, presentare le proprie ricerche e rimanere aggiornati sulle più recenti innovazioni nell’ambito dell’applicazione clinica dei metodi di analisi del movimento. Questo ha contribuito, in questi venti anni, a fare avanzare sensibilmente la ricerca italiana nel settore, conferendole un respiro ed un impatto internazionale, e a diffonderne l'applicazione clinica per migliorare la valutazione dei disordini motori, aumentare l'efficacia dei trattamenti attraverso l'analisi quantitativa dei dati e una più focalizzata pianificazione dei trattamenti, ed inoltre per quantificare i risultati delle terapie correnti
    corecore