79 research outputs found

    Investigation of domestic level EV chargers in the Distribution Network: An Assessment and mitigation solution

    Get PDF
    This research focuses on the electrification of the transport sector. Such electrification could potentially pose challenges to the distribution system operator (DSO) in terms of reliability, power quality and cost-effective implementation. This thesis contributes to both, an Electrical Vehicle (EV) load demand profiling and advanced use of reactive power compensation (D-STATCOM) to facilitate flexible and secure network operation. The main aim of this research is to investigate the planning and operation of low voltage distribution networks (LVDN) with increasing electrical vehicles (EVs) proliferation and the effects of higher demand charging systems. This work is based on two different independent strands of research. Firstly, the thesis illustrates how the flexibility and composition of aggregated EVs demand can be obtained with very limited information available. Once the composition of demand is available, future energy scenarios are analysed in respect to the impact of higher EVs charging rates on single phase connections at LV distribution network level. A novel planning model based on energy scenario simulations suitable for the utilization of existing assets is developed. The proposed framework can provide probabilistic risk assessment of power quality (PQ) variations that may arise due to the proliferation of significant numbers of EVs chargers. Monte Carlo (MC) based simulation is applied in this regard. This probabilistic approach is used to estimate the likely impact of EVs chargers against the extreme-case scenarios. Secondly, in relation to increased EVs penetration, dynamic reactive power reserve management through network voltage control is considered. In this regard, a generic distribution static synchronous compensator (D-STATCOM) model is adapted to achieve network voltage stability. The main emphasis is on a generic D-STATCOM modelling technique, where each individual EV charging is considered through a probability density function that is inclusive of dynamic D-STATCOM support. It demonstrates how optimal techniques can consider the demand flexibility at each bus to meet the requirement of network operator while maintaining the relevant steady state and/or dynamic performance indicators (voltage level) of the network. The results show that reactive power compensation through D-STATCOM, in the context of EVs integration, can provide continuous voltage support and thereby facilitate 90% penetration of network customers with EV connections at a normal EV charging rate (3.68 kW). The results are improved by using optimal power flow. The results suggest, if fast charging (up to 11 kW) is employed, up to 50% of network EV customers can be accommodated by utilising the optimal planning approach. During the case study, it is observed that the transformer loading is increased significantly in the presence of D-STATCOM. The transformer loading reaches approximately up to 300%, in one of the contingencies at 11 kW EV charging, so transformer upgrading is still required. Three-phase connected DSTATCOM is normally used by the DSO to control power quality issues in the network. Although, to maintain voltage level at each individual phase with three-phase connected device is not possible. So, single-phase connected D-STATCOM is used to control the voltage at each individual phase. Single-phase connected D-STATCOM is able maintain the voltage level at each individual phase at 1 p.u. This research will be of interest to the DSO, as it will provide an insight to the issues associated with higher penetration of EV chargers, present in the realization of a sustainable transport electrification agenda

    Future Challenges and Mitigation Methods for High Photovoltaic Penetration: A Survey

    Get PDF
    : Integration of high volume (high penetration) of photovoltaic (PV) generation with power grids consequently leads to some technical challenges that are mainly due to the intermittent nature of solar energy, the volume of data involved in the smart grid architecture, and the impact power electronic-based smart inverters. These challenges include reverse power flow, voltage fluctuations, power quality issues, dynamic stability, big data challenges and others. This paper investigates the existing challenges with the current level of PV penetration and looks into the challenges with high PV penetration in future scenarios such as smart cities, transactive energy, proliferation of plug-in hybrid electric vehicles (PHEVs), possible eclipse events, big data issues and environmental impacts. Within the context of these future scenarios, this paper reviewed the existing solutions and provides insights to new and future solutions that could be explored to ultimately address these issues and improve the smart grid’s security, reliability and resilienc

    Smart Operation of Four-Quadrant Electric Vehicle Chargers in Distribution Grids

    Get PDF
    Many policies and programs adopted in the context of climate change mitigation and substitution of fossil fuels are contributing to the continuous development and growth of Electric Vehicles (EVs) in urban mobility systems, reaching 1.26 million units on the roads through the end of 2015. Even though the increasing number of EVs will create problems in distribution systems, which can be mitigated using smart charging strategies, there will also be economic opportunities for EV owners to provide services to the grid while their vehicle are parked and plugged in, a concept known as Vehicle-to-Grid (V2G). Most of the studies on V2G have concentrated on the provision of services such as frequency regulation or spinning reserves, which may reduce the battery life because of the required extra charging/discharging cycles, and little attention has been paid to the possibility of providing reactive power control services to the grid by using the ac/dc converter and the dc link capacitor available in most advanced chargers, a practice that does not compromise the vehicle battery life. These kinds of chargers, which are known as four-quadrant EV chargers due to the capability of being operated in all quadrants of the P-Q plane, can be used in distribution networks to improve the power factor and help regulate voltage, thus facilitating larger EV penetrations, as discussed in this thesis. In the first part of this thesis, a new average model of a single-phase, four-quadrant EV charger is developed. The steady-state and step responses of the proposed model for different P-Q requests, corresponding to the operation in the four quadrants of the P-Q plane, are used to validate its performance against a four-quadrant EV charger prototype. The model is shown to be useful for efficient time-domain simulations and studies that include a number of EV chargers, such as EV integration studies in Low-Voltage (LV) distribution networks. A practical case study is presented to demonstrate and test the performances of the four-quadrant charger and its model, investigating the voltage interactions of several chargers in an LV residential network during the provision of three vehicle-to-grid (V2G) strategies for active and reactive power. In the second part, a novel three-stage algorithm to coordinate the operation of four-quadrant EV chargers with other volt/var control devices in Medium-Voltage (MV) and LV distribution feeders is proposed. The first stage of the algorithm is operated on a day-ahead basis and defines the Load Tap Changer (LTC) and capacitor schedules while minimizing the peak load associated with EVs in the distribution system. The second and third stages update their operation every five minutes, to fairly allocate the aggregated and individual EV loads in the MV and LV feeders, respectively, while minimizing active power losses and voltage deviations. The proposed technique is applied to CIGRE's North-American MV and LV benchmark systems to demonstrate its ability to properly allocate EV loads, and improve distribution system performance in terms of losses and voltage profiles
    • …
    corecore