61,931 research outputs found

    Pragmatic Ontology Evolution: Reconciling User Requirements and Application Performance

    Get PDF
    Increasingly, organizations are adopting ontologies to describe their large catalogues of items. These ontologies need to evolve regularly in response to changes in the domain and the emergence of new requirements. An important step of this process is the selection of candidate concepts to include in the new version of the ontology. This operation needs to take into account a variety of factors and in particular reconcile user requirements and application performance. Current ontology evolution methods focus either on ranking concepts according to their relevance or on preserving compatibility with existing applications. However, they do not take in consideration the impact of the ontology evolution process on the performance of computational tasks – e.g., in this work we focus on instance tagging, similarity computation, generation of recommendations, and data clustering. In this paper, we propose the Pragmatic Ontology Evolution (POE) framework, a novel approach for selecting from a group of candidates a set of concepts able to produce a new version of a given ontology that i) is consistent with the a set of user requirements (e.g., max number of concepts in the ontology), ii) is parametrised with respect to a number of dimensions (e.g., topological considerations), and iii) effectively supports relevant computational tasks. Our approach also supports users in navigating the space of possible solutions by showing how certain choices, such as limiting the number of concepts or privileging trendy concepts rather than historical ones, would reflect on the application performance. An evaluation of POE on the real-world scenario of the evolving Springer Nature taxonomy for editorial classification yielded excellent results, demonstrating a significant improvement over alternative approaches

    Improved ontology for eukaryotic single-exon coding sequences in biological databases

    Get PDF
    Indexación: Scopus.Efficient extraction of knowledge from biological data requires the development of structured vocabularies to unambiguously define biological terms. This paper proposes descriptions and definitions to disambiguate the term 'single-exon gene'. Eukaryotic Single-Exon Genes (SEGs) have been defined as genes that do not have introns in their protein coding sequences. They have been studied not only to determine their origin and evolution but also because their expression has been linked to several types of human cancer and neurological/developmental disorders and many exhibit tissue-specific transcription. Unfortunately, the term 'SEGs' is rife with ambiguity, leading to biological misinterpretations. In the classic definition, no distinction is made between SEGs that harbor introns in their untranslated regions (UTRs) versus those without. This distinction is important to make because the presence of introns in UTRs affects transcriptional regulation and post-transcriptional processing of the mRNA. In addition, recent whole-transcriptome shotgun sequencing has led to the discovery of many examples of single-exon mRNAs that arise from alternative splicing of multi-exon genes, these single-exon isoforms are being confused with SEGs despite their clearly different origin. The increasing expansion of RNA-seq datasets makes it imperative to distinguish the different SEG types before annotation errors become indelibly propagated in biological databases. This paper develops a structured vocabulary for their disambiguation, allowing a major reassessment of their evolutionary trajectories, regulation, RNA processing and transport, and provides the opportunity to improve the detection of gene associations with disorders including cancers, neurological and developmental diseases. © The Author(s) 2018. Published by Oxford University Press.https://academic.oup.com/database/article/doi/10.1093/database/bay089/509943

    An Approach to Cope with Ontology Changes for Ontology-based Applications

    No full text
    Keeping track of ontology changes is becoming a critical issue for ontology-based applications because updating an ontology that is in use may result in inconsistencies between the ontology and the knowledge base, dependent ontologies and dependent applications/services. Current research concentrates on the creation of ontologies and how to manage ontology changes in terms of the attempts to ease the communications between ontology versions and keep consistent with the instances, and there is little work available on controlling the impact to dependent applications/services which is the aims of the system presented in this paper. The approach we propose in this paper is to manually capture and log ontology changes, use this log to analyse incoming RDQL queries and amend them as necessary. Revised queries can then be used to query the knowledge base of the applications/services. We present the infrastructure of our approach based on the problems and scenarios identified within ontology-based systems. We discuss the issues met during our design and implementation, and consider some problems whose solutions will be beneficial to the development of our approach

    Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States

    No full text
    Filamentous fungi rapidly evolve in response to environmental selection pressures in part due to their genomic plasticity. Parastagonospora nodorum, a fungal pathogen of wheat and causal agent of septoria nodorum blotch, responds to selection pressure exerted by its host, influencing the gain, loss, or functional diversification of virulence determinants, known as effector genes. Whole genome resequencing of 197 P. nodorum isolates collected from spring, durum, and winter wheat production regions of the United States enabled the examination of effector diversity and genomic regions under selection specific to geographically discrete populations. 1,026,859 SNPs/InDels were used to identify novel loci, as well as SnToxA and SnTox3 as factors in disease. Genes displaying presence/absence variation, predicted effector genes, and genes localized on an accessory chromosome had significantly higher pN/pS ratios, indicating a higher rate of sequence evolution. Population structure analyses indicated two P. nodorum populations corresponding to the Upper Midwest (Population 1) and Southern/Eastern United States (Population 2). Prevalence of SnToxA varied greatly between the two populations which correlated with presence of the host sensitivity gene Tsn1 in the most prevalent cultivars in the corresponding regions. Additionally, 12 and 5 candidate effector genes were observed to be under diversifying selection among isolates from Population 1 and 2, respectively, but under purifying selection or neutrally evolving in the opposite population. Selective sweep analysis revealed 10 and 19 regions that had recently undergone positive selection in Population 1 and 2, respectively, involving 92 genes in total. When comparing genes with and without presence/absence variation, those genes exhibiting this variation were significantly closer to transposable elements. Taken together, these results indicate that P. nodorum is rapidly adapting to distinct selection pressures unique to spring and winter wheat production regions by rapid adaptive evolution and various routes of genomic diversification, potentially facilitated through transposable element activity

    Eliciting the Functional Taxonomy from protein annotations and taxa

    Get PDF
    The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules

    Genomic Selective Constraints in Murid Noncoding DNA

    Get PDF
    Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate toward the 5' end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids

    Genome-wide signatures of convergent evolution in echolocating mammals

    Get PDF
    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised
    corecore