3,719 research outputs found
Pediatric non alcoholic fatty liver disease: old and new concepts on development, progression, metabolic insight and potential treatment targets
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in children. NAFLD has emerged to be extremely prevalent, and predicted by obesity and male gender. It is defined by hepatic fat infiltration >5% hepatocytes, in the absence of other causes of liver pathology. It includes a spectrum of disease ranging from intrahepatic fat accumulation (steatosis) to various degrees of necrotic inflammation and fibrosis (non-alcoholic steatohepatatis [NASH]). NAFLD is associated, in children as in adults, with severe metabolic impairments, determining an increased risk of developing the metabolic syndrome. It can evolve to cirrhosis and hepatocellular carcinoma, with the consequent need for liver transplantation. Both genetic and environmental factors seem to be involved in the development and progression of the disease, but its physiopathology is not yet entirely clear. In view of this mounting epidemic phenomenon involving the youth, the study of NAFLD should be a priority for all health care systems. This review provides an overview of current and new clinical-histological concepts of pediatric NAFLD, going through possible implications into patho-physiolocical and therapeutic perspectives
Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models.
Metabolic syndrome (MetS), characterized as obesity, insulin resistance, and non-alcoholic fatty liver diseases (NAFLD), is associated with vitamin D insufficiency/deficiency in epidemiological studies, while the underlying mechanism is poorly addressed. On the other hand, disorder of gut microbiota, namely dysbiosis, is known to cause MetS and NAFLD. It is also known that systemic inflammation blocks insulin signaling pathways, leading to insulin resistance and glucose intolerance, which are the driving force for hepatic steatosis. Vitamin D receptor (VDR) is highly expressed in the ileum of the small intestine, which prompted us to test a hypothesis that vitamin D signaling may determine the enterotype of gut microbiota through regulating the intestinal interface. Here, we demonstrate that high-fat-diet feeding (HFD) is necessary but not sufficient, while additional vitamin D deficiency (VDD) as a second hit is needed, to induce robust insulin resistance and fatty liver. Under the two hits (HFD+VDD), the Paneth cell-specific alpha-defensins including α-defensin 5 (DEFA5), MMP7 which activates the pro-defensins, as well as tight junction genes, and MUC2 are all suppressed in the ileum, resulting in mucosal collapse, increased gut permeability, dysbiosis, endotoxemia, systemic inflammation which underlie insulin resistance and hepatic steatosis. Moreover, under the vitamin D deficient high fat feeding (HFD+VDD), Helicobacter hepaticus, a known murine hepatic-pathogen, is substantially amplified in the ileum, while Akkermansia muciniphila, a beneficial symbiotic, is diminished. Likewise, the VD receptor (VDR) knockout mice exhibit similar phenotypes, showing down regulation of alpha-defensins and MMP7 in the ileum, increased Helicobacter hepaticus and suppressed Akkermansia muciniphila. Remarkably, oral administration of DEFA5 restored eubiosys, showing suppression of Helicobacter hepaticus and increase of Akkermansia muciniphila in association with resolving metabolic disorders and fatty liver in the HFD+VDD mice. An in vitro analysis showed that DEFA5 peptide could directly suppress Helicobacter hepaticus. Thus, the results of this study reveal critical roles of a vitamin D/VDR axis in optimal expression of defensins and tight junction genes in support of intestinal integrity and eubiosis to suppress NAFLD and metabolic disorders
Vitamin D to reduce liver fibrosis in non-alcoholic fatty liver disease
BACKGROUND: As the prevalence of metabolic risk factors in the American population has increased over time, so too has the diagnoses of non-alcoholic fatty liver disease (NAFLD). Within this spectrum of disease lies the potential for silent progression towards cirrhosis, leaving the patient with few options for treatment. Currently, the standard of care remains counseling on diet and exercise with the goal of reversing disease progression by addressing the underlying risk factors.
LITERATURE REVIEW: Recent studies have shown that a correlation exists between low levels of serum 25-hydroxyvitamin D and hepatic injury from NAFLD. This has become an active area of research, due in part to the anti-inflammatory and immunoregulatory properties of vitamin D. The prospect of a simple and cost effective intervention that can exert its effects on the mechanisms behind the development of NAFLD is interesting and warrants further research.
PROPOSED PROJECT: This proposal is for a double-blind, randomized, experimental study of vitamin D3 (cholecalciferol) versus placebo in a patient population of those with both clinically proven NAFLD and concomitant vitamin D deficiency. Liver fibrosis will be measured and staged with the use of FibroScan elastography. The statistical analysis thereafter will determine if a clinically significant reduction in hepatic fibrosis exists, compared with the results of the placebo group.
CONCLUSIONS/SIGNIFICANCE: Should vitamin D prove to be an effective treatment option in reversing the progression of NAFLD, clinicians would be equipped with a simple and safe tool to augment their management of the patient. For those that experience barriers (i.e. lower socioeconomic status, other comorbidities, etc.) preventing them from improving diet and exercise, vitamin D would serve as an alternative therapy to aid in reducing their disease burden. Easier methods to treat their disease now projects improved quality of life years later
Recommended from our members
Metabolic syndrome does not affect sustained virologic response of direct-acting antivirals while hepatitis C clearance improves hemoglobin A1c.
AimTo determine whether successful treatment with directacting antivirals (DAA) is associated with improvements in hemoglobin A1c (HbA1c) and if type 2 diabetes mellitus (T2DM) or metabolic syndrome affects sustained virologic response (SVR).MethodsWe performed a retrospective analysis of all hepatitis C virus (HCV) patients at the VA Greater Los Angeles Healthcare System treated with varying DAA therapy between 2014-2016. Separate multivariable logistic regression was performed to determine predictors of HbA1c decrease ≥ 0.5 after DAA treatment and predictors of SVR 12-wk post treatment (SVR12).ResultsA total of 1068 patients were treated with DAA therapy between 2014-2016. The presence of T2DM or metabolic syndrome did not adversely affect SVR12. 106 patients had both HCV and T2DM. Within that cohort, patients who achieved SVR12 had lower mean HbA1c pre treatment (7.35 vs 8.60, P = 0.02), and lower mean HbA1c post-treatment compared to non-responders (6.55 vs 8.61, P = 0.01). The mean reduction in HbA1c after treatment was greater for those who achieved SVR12 than for non-responders (0.79 vs 0.01, P = 0.03). In adjusted models, patients that achieved SVR12 were more likely to have a HbA1c decrease of ≥ 0.5 than those that did not achieve SVR12 (adjusted OR = 7.24, 95%CI: 1.22-42.94).ConclusionIn HCV patients with T2DM, successful treatment with DAA was associated with a significant reduction in HbA1c suggesting that DAA may have a role in improving insulin sensitivity. Furthermore, the presence of T2DM or metabolic syndrome does not adversely affect SVR12 rates in patients treated with DAA
Gender Differences in Bile Acids and Microbiota in Relationship with Gender Dissimilarity in Steatosis Induced by Diet and FXR Inactivation.
This study aims to uncover how specific bacteria and bile acids (BAs) contribute to steatosis induced by diet and farnesoid X receptor (FXR) deficiency in both genders. A control diet (CD) and Western diet (WD), which contains high fat and carbohydrate, were used to feed wild type (WT) and FXR knockout (KO) mice followed by phenotyping characterization as well as BA and microbiota profiling. Our data revealed that male WD-fed FXR KO mice had the most severe steatosis and highest hepatic and serum lipids as well as insulin resistance among the eight studied groups. Gender differences in WD-induced steatosis, insulin sensitivity, and predicted microbiota functions were all FXR-dependent. FXR deficiency enriched Desulfovibrionaceae, Deferribacteraceae, and Helicobacteraceae, which were accompanied by increased hepatic taurine-conjugated cholic acid and β-muricholic acid as well as hepatic and serum lipids. Additionally, distinct microbiota profiles were found in WD-fed WT mice harboring simple steatosis and CD-fed FXR KO mice, in which the steatosis had a potential to develop into liver cancer. Together, the presented data revealed FXR-dependent concomitant relationships between gut microbiota, BAs, and metabolic diseases in both genders. Gender differences in BAs and microbiota may account for gender dissimilarity in metabolism and metabolic diseases
Association between noninvasive fibrosis markers and cardio-vascular organ damage among adults with hepatic steatosis
Evidence suggests that advanced fibrosis, as determined by the noninvasive NAFLD fibrosis score (NFS), is a predictor of cardiovascular mortality in individuals with ultrasonography-diagnosed NAFLD. Whether the severity of histology (i.e., fibrosis stage) is associated with more pronounced cardiovascular organ damage is unsettled. In this study, we analyzed the clinical utility of NFS in assessing increased carotid intima-media thickness (cIMT), and left ventricular mass index (LVMI). In this cross-sectional study NFS, cIMT and LVMI were assessed in 400 individuals with ultrasonography-diagnosed steatosis. As compared with individuals at low probability of liver fibrosis, individuals both at high and at intermediate probability of fibrosis showed an unfavorable cardio-metabolic risk profile having significantly higher values of waist circumference, insulin resistance, high sensitivity C-reactive protein (hsCRP), fibrinogen, cIMT, and LVMI, and lower insulin-like growth factor-1 (IGF-1) levels. The differences in cIMT and LVMI remained significant after adjustment for smoking and metabolic syndrome. In a logistic regression model adjusted for age, gender, smoking, and diagnosis of metabolic syndrome, individuals at high probability of fibrosis had a 3.9-fold increased risk of vascular atherosclerosis, defined as cIMT.0.9 mm, (OR 3.95, 95% CI 1.12–13.87) as compared with individuals at low probability of fibrosis. Individuals at high probability of fibrosis had a 3.5-fold increased risk of left ventricular hypertrophy (LVH) (OR 3.55, 95% CI 1.22–10.34) as compared with individuals at low probability of fibrosis. In conclusion, advanced fibrosis, determined by noninvasive fibrosis markers, is associated with cardiovascular organ damage independent of other known factors
The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance from the American Association for the Study of Liver Diseases
This guidance provides a data-supported approach to the diagnostic, therapeutic, and preventive aspects of NAFLD care. A “Guidance” document is different from a “Guideline.” Guidelines are developed by a multidisciplinary panel of experts and rate the quality (level) of the evidence and the strength of each recommendation using the Grading of Recommendations, Assessment Development, and Evaluation (GRADE) system. A guidance document is developed by a panel of experts in the topic, and guidance statements, not recommendations, are put forward to help clinicians understand and implement the most recent evidence
The effect of 12 weeks regular physical activity and vitamin E in the treatment of non-alcoholic steatohepatitis: A pilot study
Background: Despite the prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH), there was no treatment has been proven to be effective in these common diseases. Although many studies have shown that lifestyle modifications such as increasing physical activities and exercise could be effective in the treatment of these common diseases, the optimal strategy was still not determined. According to the beneficial effects of antioxidant agents in the treatment of NASH, vitamin E has been used for this purpose by some clinicians. We designed this study for assessing beneficial effects of regular physical activity on the biochemical and imaging responses in patients with NASH and comparing this with vitamin E as an accepted treatment for NASH. Materials and Methods: This study was Randomized and single-blind clinical trials were carried out in Gonbad-e Kavus through which a total of 30 consecutive patients with the ultra sonographic diagnosis of non-alcoholic steatohepatitis (NASH)were enrolled and randomized to one of the three groups: Vitamin E 800 mg/day, regular physical activity, or both. Results: In all treatment groups improvement in liver transaminases level, serum lipids and ultrasonographic grading of fatty liver occurred after three months of treatment. When these decrement was compared between the treatment groups, there was no statistically significant difference in the value of improvement between the three groups (ANOVA: p>0.5). I.e. all three interventions improved the biochemical and ultrasonographic finding of fatty liver in the same way. Both groups with regular exercise had significant mean weight loss in comparison with the vitamin E group (a mean decrease of 3.0 kg in exercise group, 5.8 kg in subjects on regular exercise plus vitamin E and 0.2 kg in vitamin E group, ANOVA: p=0.04). Conclusion: There were no significant differences between exercise and vitamin E alone or in combination regarding the reduction in the level of liver enzymes and sonographic evidences of fatty liver although both resulted in significant improvements in biochemical endpoints. This implies that physical activity could be considered as effective as vitamin E in the improvement of biochemical and ultrasonographic presentations of NASH and the addition of Vitamin E does not offer any benefits. According to the findings of this pilot study a full-powered study with a control group should be designed. © 2015, Iranian Association of Gastroenterology and Hepatology. All rights reserved
Non-Alcoholic Steatohepatitis: Limited Available Treatment Options but Promising Drugs in Development and Recent Progress Towards a Regulatory Approval Pathway
The prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) is increasing world-wide in parallel to the increase of the obesity epidemic. Insulin resistance (IR) and the accumulation of triglyceride-derived toxic lipid metabolites play a key role in its pathogenesis. Multiple biomarkers are being evaluated for the non-invasive diagnosis of NASH. However, a percutaneous liver biopsy is still the gold standard method; the minimal diagnostic criteria include the presence of \u3e5 % macrovesicular steatosis, inflammation, and liver cell ballooning. Several pharmaceutical agents have been evaluated for the treatment of NASH; however, no single therapy has been approved so far. Due to the increasing prevalence and the health burden, there is a high need to develop therapeutic strategies for patients with NASH targeting both those with early-stage disease as well as those with advanced liver fibrosis. There are unique challenges in the design of studies for these target populations. Collaborative efforts of health authorities, medical disease experts, and the pharmaceutical industry are ongoing to align options for a registrational pathway. Several companies pursuing different mechanisms of action are nearing the end of phase II with their candidates. This manuscript reviews those compounds with a variety of mode of actions that have been evaluated and/or are currently being tested with the goal of achieving a NAFLD/NASH indication
The impact of nonalcoholic fatty liver disease on renal function in children with overweight/obesity
The association between nonalcoholic fatty liver disease (NAFLD) and chronic kidney disease has attracted interest and attention over recent years. However, no data are available in children. We determined whether children with NAFLD show signs of renal functional alterations, as determined by estimated glomerular filtration rate (eGFR) and urinary albumin excretion. We studied 596 children with overweight/obesity, 268 with NAFLD (hepatic fat fraction >= 5% on magnetic resonance imaging) and 328 without NAFLD, and 130 healthy normal-weight controls. Decreased GFR was defined as eGFR < 90 mL/min/1.73 m(2). Abnormal albuminuria was defined as urinary excretion of >= 30 mg/24 h of albumin. A greater prevalence of eGFR < 90 mL/min/1.73 m2 was observed in patients with NAFLD compared to those without liver involvement and healthy subjects (17.5% vs. 6.7% vs. 0.77%; p < 0.0001). The proportion of children with abnormal albuminuria was also higher in the NAFLD group compared to those without NAFLD, and controls (9.3% vs. 4.0% vs. 0; p < 0.0001). Multivariate logistic regression analysis revealed that NAFLD was associated with decreased eGFR and/or microalbuminuria (odds ratio, 2.54 (confidence interval, 1.16-5.57); p < 0.05) independently of anthropometric and clinical variables. Children with NAFLD are at risk for early renal dysfunction. Recognition of this abnormality in the young may help to prevent the ongoing development of the disease
- …
