4,082 research outputs found

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201

    Percolation and Connectivity on the Signal to Interference Ratio Graph

    Full text link
    A wireless communication network is considered where any two nodes are connected if the signal-to-interference ratio (SIR) between them is greater than a threshold. Assuming that the nodes of the wireless network are distributed as a Poisson point process (PPP), percolation (unbounded connected cluster) on the resulting SIR graph is studied as a function of the density of the PPP. For both the path-loss as well as path-loss plus fading model of signal propagation, it is shown that for a small enough threshold, there exists a closed interval of densities for which percolation happens with non-zero probability. Conversely, for the path-loss model of signal propagation, it is shown that for a large enough threshold, there exists a closed interval of densities for which the probability of percolation is zero. Restricting all nodes to lie in an unit square, connectivity properties of the SIR graph are also studied. Assigning separate frequency bands or time-slots proportional to the logarithm of the number of nodes to different nodes for transmission/reception is sufficient to guarantee connectivity in the SIR graph.Comment: To appear in the Proceedings of the IEEE Conference on Computer Communications (INFOCOM 2012), to be held in Orlando Florida Mar. 201

    A Case for Time Slotted Channel Hopping for ICN in the IoT

    Full text link
    Recent proposals to simplify the operation of the IoT include the use of Information Centric Networking (ICN) paradigms. While this is promising, several challenges remain. In this paper, our core contributions (a) leverage ICN communication patterns to dynamically optimize the use of TSCH (Time Slotted Channel Hopping), a wireless link layer technology increasingly popular in the IoT, and (b) make IoT-style routing adaptive to names, resources, and traffic patterns throughout the network--both without cross-layering. Through a series of experiments on the FIT IoT-LAB interconnecting typical IoT hardware, we find that our approach is fully robust against wireless interference, and almost halves the energy consumed for transmission when compared to CSMA. Most importantly, our adaptive scheduling prevents the time-slotted MAC layer from sacrificing throughput and delay

    Connectivity vs Capacity in Dense Ad Hoc Networks

    Get PDF
    We study the connectivity and capacity of finite area ad hoc wireless networks, with an increasing number of nodes (dense networks). We find that the properties of the network strongly depend on the shape of the attenuation function. For power law attenuation functions, connectivity scales, and the available rate per node is known to decrease like 1/sqrt(n). On the contrary, if the attenuation function does not have a singularity at the origin and is uniformly bounded, we obtain bounds on the percolation domain for large node densities, which show that either the network becomes disconnected, or the available rate per node decreases like 1/n

    Interference estimation in an aeronautical ad hoc network

    Get PDF
    Recent research have considered aeronautical ad hoc networks as a possible mean for future aeronautical communications. By introducing inter- aircraft links, they are supposed to become an alternative to existing solutions based on direct air- ground or satellite links. In this paper, we propose the use of asynchronous Code Division Multiple Access (CDMA) in aeronautical ad hoc networks. We then present a simulation model developed with OPNET Modeler that estimates the impact of Multiple Access Interference (MAI) on packets delivery. Finally, we give the results of some simulations made with an ATC/AOC traffic model, and with real aircraft positions over the French sky

    Plausible Mobility: Inferring Movement from Contacts

    Full text link
    We address the difficult question of inferring plausible node mobility based only on information from wireless contact traces. Working with mobility information allows richer protocol simulations, particularly in dense networks, but requires complex set-ups to measure, whereas contact information is easier to measure but only allows for simplistic simulation models. In a contact trace a lot of node movement information is irretrievably lost so the original positions and velocities are in general out of reach. We propose a fast heuristic algorithm, inspired by dynamic force-based graph drawing, capable of inferring a plausible movement from any contact trace, and evaluate it on both synthetic and real-life contact traces. Our results reveal that (i) the quality of the inferred mobility is directly linked to the precision of the measured contact trace, and (ii) the simple addition of appropriate anticipation forces between nodes leads to an accurate inferred mobility.Comment: 8 pages, 8 figures, 1 tabl

    Wireless Broadcast with Network Coding in Mobile Ad-Hoc Networks: DRAGONCAST

    Get PDF
    Network coding is a recently proposed method for transmitting data, which has been shown to have potential to improve wireless network performance. We study network coding for one specific case of multicast, broadcasting, from one source to all nodes of the network. We use network coding as a loss tolerant, energy-efficient, method for broadcast. Our emphasis is on mobile networks. Our contribution is the proposal of DRAGONCAST, a protocol to perform network coding in such a dynamically evolving environment. It is based on three building blocks: a method to permit real-time decoding of network coding, a method to adjust the network coding transmission rates, and a method for ensuring the termination of the broadcast. The performance and behavior of the method are explored experimentally by simulations; they illustrate the excellent performance of the protocol

    Connectivity in Sub-Poisson Networks

    Get PDF
    We consider a class of point processes (pp), which we call {\em sub-Poisson}; these are pp that can be directionally-convexly (dcxdcx) dominated by some Poisson pp. The dcxdcx order has already been shown useful in comparing various point process characteristics, including Ripley's and correlation functions as well as shot-noise fields generated by pp, indicating in particular that smaller in the dcxdcx order processes exhibit more regularity (less clustering, less voids) in the repartition of their points. Using these results, in this paper we study the impact of the dcxdcx ordering of pp on the properties of two continuum percolation models, which have been proposed in the literature to address macroscopic connectivity properties of large wireless networks. As the first main result of this paper, we extend the classical result on the existence of phase transition in the percolation of the Gilbert's graph (called also the Boolean model), generated by a homogeneous Poisson pp, to the class of homogeneous sub-Poisson pp. We also extend a recent result of the same nature for the SINR graph, to sub-Poisson pp. Finally, as examples we show that the so-called perturbed lattices are sub-Poisson. More generally, perturbed lattices provide some spectrum of models that ranges from periodic grids, usually considered in cellular network context, to Poisson ad-hoc networks, and to various more clustered pp including some doubly stochastic Poisson ones.Comment: 8 pages, 10 figures, to appear in Proc. of Allerton 2010. For an extended version see http://hal.inria.fr/inria-00497707 version
    • …
    corecore