3,963 research outputs found

    Impact of High Penetration of Photovoltaics on Low Voltage Systems and Remedial Actions

    Get PDF
    Residential rooftop photovoltaics (PV) systems have great potential to supply part of the growing energy demand. However, its non-dispatchable, fluctuating, and intermittent characteristics may negatively impact the power quality and reliability (PQR) of low voltage (LV) distribution feeders. Large amounts of non-dispatchable PV sources, if integrated in a distributed way, can reverse the power flow in the feeder and lead to overvoltages. In diesel-based autonomous systems with high-penetration of PVs, the reduction in net load can significantly increase the wear and tear on the diesel genset(s). Therefore, connection of only a modest amount of PV is currently allowed at the LV level without a prior impact-assessment study. This thesis focuses on the detrimental impact of high penetration of PVs on LV systems and on the remedial actions that can be taken to increase PQR and the displacement of fossil fuels in diesel-based autonomous systems. Two scenarios are considered. First is the possibility of overvoltages in LV grid connected systems during periods of high PV generation and low load. The solutions used in medium-voltage feeders need to be revisited in light of the mostly resistive characteristics of LV feeders. An alternative is to use active power curtailment (APC) techniques. A droop-based APC approach, in which all inverters use the same droop coefficients, is analyzed. However, this strategy results in more APC in the PV inverters located near the end of the feeder than in the ones in the beginning. A new approach is proposed that allows equal sharing of the APC. A one-year simulation study assessed the overvoltage occurrences, the sharing of the burden for overvoltage prevention per house, and the total energy yield of the feeder using a benchmark based on typical parameters of Canadian LV feeders. The second scenario involves the impact of high-penetration PV systems in diesel-based autonomous LV systems, which are typical of remote communities. The use of APC of PV inverters is discussed, focusing on reducing the frequency variations and ensuring the diesel genset's minimum load, and can improve fuel consumption. This theoretical analysis is validated by simulations. Fuel consumption and yearly energy yields are estimated using statistical information about the load and solar irradiation

    Case study on the effects of partial solar eclipse on distributed PV systems and management areas

    Get PDF
    Photovoltaic (PV) systems are weather-dependent. A solar eclipse causes significant changes in these parameters, thereby impacting PV generation profile, performance, and power quality of larger grid, where they connect to. This study presents a case study to evaluate the impacts of the solar eclipse of 21 August 2017, on two real-world grid-tied PV systems (1.4 MW and 355 kW) in Miami and Daytona, Florida, the feeders they are connected to, and the management areas they belong to. Four types of analyses are conducted to obtain a comprehensive picture of the impacts using 1 min PV generation data, hourly weather data, real feeder parameters, and daily reliability data. These analyses include: individual PV system performance measurement using power performance index; power quality analysis at the point of interconnection; a study on the operation of voltage regulating devices on the feeders during eclipse peak using an IEEE 8500 test case distribution feeder; and reliability study involving a multilayer perceptron framework for forecasting system reliability of the management areas. Results from this study provide a unique insight into how solar eclipses impact the behaviour of PV systems and the grid, which would be of concern to electric utilities in future high penetration scenarios

    Modeling of Utility Distribution Feeder in OpenDSS with Steady State Impact Analysis of Distributed Generation

    Get PDF
    With the deregulation of the electric power industry and the advancement of new technologies, the attention of the utilities has been drawn towards adopting Distributed Generation (DG) into their existing infrastructure. The deployment of DG brings ample technological and environmental benefits to the traditional distribution networks. The appropriate sizing and placement of DGs which generate power locally to fulfill consumer demands, helps to reduce power losses and avoid transmission and distribution system expansion.;The primary objective of this thesis is to model a utility distribution feeder in OpenDSS. Studies are conducted on the data obtained from American Electric Power utility. This thesis develops models for 12.47 kV (medium voltage) distribution feeders in OpenDSS by utilizing the existing models in CYMDIST. The model conversion is achieved by a detailed one-to-one component matching approach for multi phased lines, conductors, underground cables, loads, regulators and capacitor banks. The power flow results of OpenDSS and CYMDIST are compared to derive important conclusions.;The second major objective is to analyze the impacts of DG on distribution systems and two focus areas are chosen, namely: effect on voltage profiles and losses of the system and the effects on power market operation. To analyze the impacts of DG on the distribution systems, Photovoltaic (PV) system with varying penetration levels are integrated at different locations along the developed feeder model. PV systems are one of the fastest growing DG technologies, with a lot of utilities in North America expressing interest in its implementation. Many utilities either receive incentives or are mandated by green-generation portfolio regulations to install solar PV systems on their feeders. The large number of PV interconnection requests to the utilities has led to typical studies in the areas of power quality, protection and operation of distribution feeders. The high penetration of PV into the system throws up some interesting implications for the utilities. Bidirectional power flow into a distribution system, (which is designed for one way power flow) may impact system voltage profiles and losses. In this thesis, the effects of voltage unbalance and the losses of the feeder are analyzed for different PV location and penetration scenarios.;Further, this thesis tries to assess the impact of DG on power market operations. In a deregulated competitive market, Generation companies (Genco) sell electricity to the Power exchange (PX) from which large customers such as distribution companies (Disco) and aggregators may purchase electricity to meet their needs through a double sided bidding system. The reliable and efficient operation of this new market structure is ensured by an independent body known as the Independent System Operator (ISO). Under such a market structure, a particular type of unit commitment, called the Price Based Unit Commitment (PBUC) is used by the Genco to determine optimal bids in order to maximize its profit. However, the inclusion of intermittent DG resources such as wind farms by the Gencos causes uncertainty in PBUC schedules. In this research, the effects of intermittency in the DG resource availability on the PBUC schedule of a Genco owning a distribution side wind farm are analyzed

    Reducing Voltage Volatility with Step Voltage Regulators: A Life-Cycle Cost Analysis of Korean Solar Photovoltaic Distributed Generation

    Get PDF
    To meet the United Nation’s sustainable development energy goal, the Korean Ministry of Commerce announced they would increase renewable energy generation to 5.3% by 2029. These energy sources are often produced in small-scale power plants located close to the end users, known as distributed generation (DG). The use of DG is an excellent way to reduce greenhouse gases but has also been found to reduce power quality and safety reliability through an increase in voltage volatility. This paper performs a life-cycle cost analysis on the use of step voltage regulators (SVR) to reduce said volatility, simulating the impact they have on existing Korean solar photovoltaic (PV) DG. From the data collected on a Korean Electrical Power Corporation 30 km/8.2 megawatts (MW) feeder system, SVRs were found to increase earnings by one million USD. SVR volatile voltage mitigation increased expected earnings by increasing the estimated allowable PV power generation by 2.7 MW. While this study is based on Korean PV power generation, its findings are applicable to any DG sources worldwide.11Nsciescopu
    corecore