5 research outputs found

    Design and characterization of BiCMOS mixed-signal circuits and devices for extreme environment applications

    Get PDF
    State-of-the-art SiGe BiCMOS technologies leverage the maturity of deep-submicron silicon CMOS processing with bandgap-engineered SiGe HBTs in a single platform that is suitable for a wide variety of high performance and highly-integrated applications (e.g., system-on-chip (SOC), system-in-package (SiP)). Due to their bandgap-engineered base, SiGe HBTs are also naturally suited for cryogenic electronics and have the potential to replace the costly de facto technologies of choice (e.g., Gallium-Arsenide (GaAs) and Indium-Phosphide (InP)) in many cryogenic applications such as radio astronomy. This work investigates the response of mixed-signal circuits (both RF and analog circuits) when operating in extreme environments, in particular, at cryogenic temperatures and in radiation-rich environments. The ultimate goal of this work is to attempt to fill the existing gap in knowledge on the cryogenic and radiation response (both single event transients (SETs) and total ionization dose (TID)) of specific RF and analog circuit blocks (i.e., RF switches and voltage references). The design approach for different RF switch topologies and voltage references circuits are presented. Standalone Field Effect Transistors (FET) and SiGe HBTs test structures were also characterized and the results are provided to aid in the analysis and understanding of the underlying mechanisms that impact the circuits' response. Radiation mitigation strategies to counterbalance the damaging effects are investigated. A comprehensive study on the impact of cryogenic temperatures on the RF linearity of SiGe HBTs fabricated in a new 4th-generation, 90 nm SiGe BiCMOS technology is also presented.Ph.D

    Photovoltaic hotspots: a mitigation technique and its thermal cycle

    Get PDF
    In the rapidly evolving field of solar energy, Photovoltaic (PV) manufacturers are constantly challenged by the degradation of PV modules due to localized overheating, commonly known as hotspots. This issue not only reduce the efficiency of solar panels but, in severe cases, can lead to irreversible damage, malfunctioning, and even fire hazards. Addressing this critical challenge, our research introduces an innovative electronic device designed to effectively mitigate PV hotspots. This pioneering solution consists of a novel combination of a current comparator and a current mirror circuit. These components are uniquely integrated with an automatic switching mechanism, notably eliminating the need for traditional bypass diodes. We rigorously tested and validated this device on PV modules exhibiting both adjacent and non-adjacent hotspots. Our findings are groundbreaking: the hotspot temperatures were significantly reduced from a dangerous 55°C to a safer 35°C. Moreover, this intervention remarkably enhanced the output power of the modules by up to 5.3%. This research not only contributes a practical solution to a longstanding problem in solar panel efficiency but also opens new pathways for enhancing the safety and longevity of solar PV systems

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Advanced 3-V semiconductor technology assessment

    Get PDF
    Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored
    corecore