14 research outputs found

    The vulnerability of the global container shipping network to targeted link disruption

    Get PDF
    Using complex network theory to describe the relational geography of maritime networks has provided great insights regarding their hierarchy and evolution over the past two decades. Unlike applications in other transport elds, notably air transport, complex network theory has had limited application in studying the vulnerability of maritime networks. This study uses targeted link disruption to investigate the strategy speci c vulnerability of the network. Although nodal infrastructure such as ports can render a network vulnerable as a result of labour strikes, trade embargoes or natural disasters, it is the shipping lines con- necting the ports that are more probably disrupted, either from within the industry, or outside. In this paper we apply and evaluate two link-based disruption strategies on the global container shipping network, one based on link betweenness, and the other on link salience, to emulate the impact of large-scale service recon guration a ecting priority links. The results show that the network is by and large robust to such recon guration. Meanwhile the exibility of the network is reduced by both strategies, but to a greater degree by betweenness, resulting in a reduction of transshipment and dynamic rerouting potential amongst the busiest port regions. The results further show that the salience strategy is highly e ective in reducing the commonality of shortest path sets, thereby diminishing opportunities for freight consolidation and scale economies.In part by the National Research Foundation of South Africa and the South African Department of Trade and Industry (THRIP, Grant Number 96415).http://www.elsevier.com/locate/physa2017-11-30hb2016Industrial and Systems Engineerin

    Design and Analysis of Efficient Freight Transportation Networks in a Collaborative Logistics Environment

    Get PDF
    The increase in total freight volumes, reducing volume per freight unit, and delivery deadlines have increased the burden on freight transportation systems of today. With the evolution of freight demand trends, there also needs to be an evolution in the freight distribution processes. Today\u27s freight transportation processes have a lot of inefficiencies that could be streamlined, thus preventing concerns like increased operational costs, road congestion, and environmental degradation. Collaborative logistics is one of the approaches where supply chain partners collaborate horizontally or/and vertically to create a centralized network that is more efficient and serves towards a common goal or objective. In this dissertation, we study intermodal transportation, and cross-docking, two major pillars of efficient, cheap, and faster freight transportation in a collaborative environment. We design an intermodal network from a centralized network perspective where all the participants intermodal operators, shippers, carriers, and customers strive towards a synchronized and cost-efficient freight network. Also, a cross-dock scheduling problem is presented for competitive shippers using a centralized cross-dock facility. The problem develops a fast heuristic and meta-heuristic approach to solve large-scale real-world problems and draws key insights from a cross-dock operator and inbound carrier\u27s perspectives

    Network design under uncertainty and demand elasticity

    Get PDF
    Network design covers a large class of fundamental problems ubiquitous in the fields of transportation and communication. These problems are modelled mathematically using directed graphs and capture the trade-off between initial investment in infrastructure and operational costs. This thesis presents the use of mixed integer programming theory and algorithms to solve network design problems and their extensions. We focus on two types of network design problems, the first is a hub location problem in which the initial investments are in the form of fixed costs for installing infrastructure at nodes for them to be equipped for the transhipment of commodities. The second is a fixed-charge multicommodity network design problem in which investments are in the form of installing infrastructure on arcs so that they may be used to transport commodities. We first present an extension of the hub location problem where both demand and transportation cost uncertainty are considered. We propose mixed integer linear programming formulations and a branch-and-cut algorithm to solve robust counterparts for this problem. Comparing the proposed models' solutions to those obtained from a commensurate stochastic counterpart, we note that their performance is similar in the risk-neutral setting while solutions from the robust counterparts are significantly superior in the risk-averse setting. We next present exact algorithms based on Benders decomposition capable of solving large-scale instances of the classic uncapacitated fixed-charge multicommodity network design problem. The method combines the use of matheuristics, general mixed integer valid inequalities, and a cut-and-solve enumeration scheme. Computational experiments show the proposed approaches to be up to three orders of magnitude faster than the state-of-the-art general purpose mixed integer programming solver. Finally, we extend the classic fixed-charge multicommodity network design problem to a profit-oriented variant that accounts for demand elasticity, commodity selection, and service commitment. An arc-based and a path-based formulation are proposed. The former is a mixed integer non-convex problem solved with a general purpose global optimization solver while the latter is an integer linear formulation with exponentially many variables solved with a hybrid matheuristic. Further analysis shows the impact of considering demand elasticity to be significant in strategic network design

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions

    Truck Platooning:Planning and Behaviour

    Get PDF

    Truck Platooning:Planning and Behaviour

    Get PDF

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Growing Closer : Density and Sprawl in the Boise Valley

    Get PDF
    How might we build modern cities as good as the neighborly places lost to suburbia\u27s sprawl? Growing Closer surveys the housing patterns and trends. Sponsored by Boise State University, the anthology was written and produced by graduate and undergraduate students in the 2010 Investigate Boise field school on urban affairs.https://scholarworks.boisestate.edu/fac_books/1308/thumbnail.jp
    corecore