125 research outputs found

    Impact of cross-saturation in sensorless control of transverse-laminated synchronous reluctance motors

    Get PDF
    Synchronous reluctance (SyR) motors are well suited to a zero-speed sensorless control, because of their inherently salient behavior. However, the cross-saturation effect can lead to large errors on the position estimate, which is based on the differential anisotropy. These errors are quantified in the paper, as a function of the working point. The so-calculated errors are then found in good accordance with the purposely obtained experimental measurements. The impact of the amplitude of the carrier voltage is then pointed out, leading to a mixed (carrier injection plus electromotive force estimation) control scheme. Last, a scheme of this type is used, with a commercial transverse-laminated SyR motor. The robustness against cross-saturation is shown, in practice, and the obtained drive performance is pointed out proving to be effective for a general-purpose applicatio

    Cross-Saturation Effects in IPM Motors and Related Impact on Sensorless Control

    Get PDF
    Permanent-magnet-assisted synchronous reluctance motors are well suited to zero-speed sensorless control because of their inherently salient behavior. However, the cross-saturation effect can lead to large errors on the position estimate, which is based on the differential anisotropy. These errors are quantified in this paper as a function of the working point. The errors that are calculated are then found to be in good accordance with the purposely obtained experimental measurement

    Sensorless Direct Flux Vector Control of Synchronous Reluctance Motors Including Standstill, MTPA and Flux Weakening

    Get PDF
    This paper proposes a sensorless direct flux vector control scheme for synchronous reluctance motor drives. Torque is controlled at constant switching frequency, via the closed loop regulation of the stator flux linkage vector and of the current component in quadrature with it, using the stator flux oriented reference frame. A hybrid flux and position observer combines back-electromotive force integration with pulsating voltage injection around zero speed. Around zero speed, the position observer takes advantage of injected pulsating voltage. Instead of the commonly used current demodulation, the position error feedback is extracted here at the output of the observerā€™s flux maps, thus resulting in immunity towards the cross-saturation position error. The Maximum Torque per Ampere (MTPA) strategy is used. A detailed analysis puts in evidence the key advantages and disadvantages related to the use of the MTPA in the sensorless control of the Synchronous Reluctance machine, for both the saliency based and the back-EMF based sensorless methods. Extensive experimental results are reported for a 2.2 kW synchronous reluctance motor prototype, showing the feasibility of the proposed method. These include speed response to step and sinusoidal load disturbances at standstill, up to 121% of rated torque, and speed response tests covering the flux weakening speed region

    Analysis of overload and sensorless control capability of PM-assisted synchronous reluctance machines

    Get PDF
    Synchronous reluctance machines are a valid alternative to induction motors for industrial applications requiring variable speed regulation. To mitigate the well-known downside of their lower power factor, permanent-magnetassisted topologies are adopted. Both high-strength rare-earth magnets and low cost ferrite magnets can be used in such machines. Their design and optimization procedures have been discussed in related literature. This paper compares synchronous reluctance machines assisted with NdFeB and ferrite magnets, focusing on torque overload capability and feasibility of saliencybased position estimation algorithms. Three prototypes were realized and tested. They all have the stator of a commercial induction motor, and three custom synchronous reluctance rotors with same laminations: one has no magnets, the other two have NdFeB and ferrite magnets respectively, designed to give the same torque at rated current. Results from simulations and experiments are presented, focusing on torque and demagnetization limits in the over-current loading range. Moreover, the feasibility of saliency-based sensorless methods is investigated, both at high and low current loads. The results of the paper suggest that the ferrite-assisted solution is the candidate solution for replacing induction motors in variable speed applications

    Transient Overload Characteristics of PM-Assisted Synchronous Reluctance Machines, Including Sensorless Control Feasibility

    Get PDF
    Synchronous reluctance machines are a highefficiency alternative to induction motors for variable-speed applications. To mitigate the well-known downside of their lower power factor, permanent-magnet-assisted topologies, in which either rare-earth or ferrite magnets are inserted into the rotor in suitable quantities, are often adopted. The design and optimization procedures for PM-assisted topologies have been thoroughly discussed in the related literature. This paper compares synchronous reluctance machines assisted with NdFeB and ferrite magnets, focusing on torque overload capability and feasibility of saliency-based position estimation algorithms. Three prototypes were realized and tested. They all have the stator of a commercial induction motor and the same customdesigned synchronous reluctance rotor laminations. Of the three prototypes, one is a pure synchronous reluctance motor, and the other two have NdFeB and ferrite magnets, respectively; both are designed to give the same torque at rated current. Results from simulations and experiments are presented comparing the transient overload capability of the three machines, in terms of torque capability and de-magnetization limit. A dynamic thermal model of the machines was developed within this scope. Moreover, the feasibility of saliency-based sensorless methods was investigated and is presented here for the three machines, both at high- and low-current loads. The results of the paper suggest that the ferrite-assisted solution is the best candidate for replacing induction motors in variable-speed applications, for its optimal tradeoff between performance and cost

    Inclusion of magnetic saturation in dynamic models of synchronous reluctance motors

    Get PDF
    This paper deals with the modeling of the magnetic saturation in synchronous reluctance motors (SyRMs). The saturation is modeled by means of analytical expressions, which can be easily embedded in dynamic equivalent-circuit models. A modified power functionā€”proposed in this paperā€”can take into account the cross saturation between the orthogonal windings, it is physically consistent, and the number of its parameters is small. The function can be used in real-time control applications and in computer simulations. The model fits well to the experimentally measured inductances of a 6.7-kW SyRM. As an application example, the proposed saturation model was implemented in a full-order observer of a motion-sensorless drive, and experimental results are shown.Peer reviewe

    Identification of Flux Maps at Constant Speed for Synchronous Motors

    Get PDF
    The accurate identification of flux linkages and inductances play a vital role in developing high-performance control methods for synchronous motors (SMs). In this thesis, the identification of flux maps of SMs at constant speed is done. The aim of this thesis is to achieve look-up tables of flux linkages as a function of machine currents. Simulation are performed on a 6.7-kW synchronous reluctance motor (SyRM). The current controlled SyRM, operating at constant speed, is fed with current sequences and the corresponding voltages are calculated. By using these calculated voltages, the motor flux linkages are identified and stored in the form of look-up tables. The iron losses and stator resistance variation are compensated during the identification process. Theses linkage look-up tables can be used as a benchmark for testing different saturation models of synchronous motors. From these look-up tables, the information about motor inductances can be obtained which can be used to fully exploit the motor torque and speed range by determining various control strategies such as the maximum torque per ampere (MTPA) and maximum torque per volt (MTPV)

    Adaptive Full-Order Observer With High-Frequency Signal Injection for Synchronous Reluctance Motor Drives

    Get PDF
    A back electromotive force-based position observer for motion-sensorless synchronous reluctance motor (SyRM) drives is augmented with high-frequency signal-injection method for improved low-speed operation. Previously proposed observer structure is further improved to account for the cross saturation in the motor. The combined observer is experimentally evaluated using a 6.7-kW SyRM drive in low-speed operation and under various load conditions. The resulting position error at low speeds and standstill is small.Peer reviewe
    • ā€¦
    corecore