1,782 research outputs found

    Enterprise network convergence: path to cost optimization

    Get PDF
    During the past two decades, telecommunications has evolved a great deal. In the eighties, people were using television, radio and telephone as their communication systems. Eventually, the introduction of the Internet and the WWW immensely transformed the telecommunications industry. This internet revolution brought about a huge change in the way businesses communicated and operated. Enterprise networks now had an increasing demand for more bandwidth as they started to embrace newer technologies. The requirements of the enterprise networks grew as the applications and services that were used in the network expanded. This stipulation for fast and high performance communication systems has now led to the emergence of converged network solutions. Enterprises across the globe are investigating new ways to implement voice, video, and data over a single network for various reasons – to optimize network costs, to restructure their communication system, to extend next generation networking abilities, or to bridge the gap between their corporate network and the existing technological progress. To date, organizations had multiple network services to support a range of communication needs. Investing in this type of multiple communication infrastructures limits the networks ability to provide resourceful bandwidth optimization services throughout the system. Thus, as the requirements for the corporate networks to handle dynamic traffic grow day by day, the need for a more effective and efficient network arises. A converged network is the solution for enterprises aspiring to employ advanced applications and innovative services. This thesis will emphasize the importance of converging network infrastructure and prove that it leads to cost savings. It discusses the characteristics, architecture, and relevant protocols of the voice, data and video traffic over both traditional infrastructure and converged architecture. While IP-based networks present excellent quality for non real-time data networking, the network by itself is not capable of providing reliable, quality and secure services for real-time traffic. In order for IP networks to perform reliable and timely transmission of real-time data, additional mechanisms to reduce delay, jitter and packet loss are required. Therefore, this thesis will also discuss the important mechanisms for running real-time traffic like voice and video over an IP network. Lastly, it will also provide an example of an enterprise network specifications (voice, video and data), and present an in depth cost analysis of a typical network vs. a converged network to prove that converged infrastructures provide significant savings

    Hospital Network Infrastructure: a Modern Look Into the Network Backbone with Real Time Visibility

    Get PDF
    For the purposes of this research, the design science discipline of Information Systems will structure the overall methodology and framework for results. By leveraging the design science framework, this study will dissect and analyze various parts of a hospital\u27s network, to uncover substandard practices and problematic weaknesses that commonly result in an overall decrease in the quality of healthcare provided to patients, and negatively affect business operations of hospitals and healthcare facilities. For the purposes of this research the chosen hospital will be categorized as Mid-Western Hospital. This thesis will investigate, in a real world healthcare organization, fault management technologies in the network design using Dual-MAN architecture. By analyzing current network bandwidth performance and financial data of a health care organization, as it relates to network connection cost, organizations can improve network performance and save money in the process. Additionally, this thesis will propose possible solutions to help manage large health care organizations\u27 network

    Effective interprocess communication (IPC) in a real-time transputer network

    Get PDF
    The thesis describes the design and implementation of an interprocess communication (IPC) mechanism within a real-time distributed operating system kernel (RT-DOS) which is designed for a transputer-based network. The requirements of real-time operating systems are examined and existing design and implementation strategies are described. Particular attention is paid to one of the object-oriented techniques although it is concluded that these techniques are not feasible for the chosen implementation platform. Studies of a number of existing operating systems are reported. The choices for various aspects of operating system design and their influence on the IPC mechanism to be used are elucidated. The actual design choices are related to the real-time requirements and the implementation that has been adopted is described. [Continues.

    Fault Tolerant Rerouting in Broadband Multiclass Networks

    Get PDF
    Modern broadband integrated service digital networks (B-ISDN) must handle multiclass traffic with diverse quality of service (QOS) requirements. The main purpose of our research is to design call rerouting mechanisms which provide rapid restoration of network services in case of link failures. We suggest two approaches: Virtual circuit (VC) and virtual path (VP) reroutings. The first approach is more reactive while the latter is more proactive. The applicability conditions for the first approach include the availability of a layered network structure similar to VC/VP architecture which is widely accepted in asynchronous transfer mode (ATM) networks. Another applicability condition is the extent of network failure: VP level restoration is designed for single link failures - the most common in the telecommunication networks. On the other hand, in case of less predictable multiple link failures, VC-level rerouting is appropriate. These two rerouting approaches vary in the amount of time required to carry them out. Though both schemes are designed to work in real time, VP-level rerouting tends to be faster and can be performed in an on-line mode using pre-computed paths. VC- level rerouting requires real-time computation of routes which may result in a noticeable impact on some services. On the other hand, VP-level rerouting requires a substantial amount of off- line computation to design the VP layout and the backup routes.In this dissertation we propose a new model and associated algorithms to solve a VC-rerouting problem in real time. This model takes advantage of the distributed network data and computational resources by decomposing the problem at an early stage and then performing the computations in a decentralized mode.In order to solve the fault tolerant VP layout problem, we formulate a bi-criteria optimization model reflecting the tradeoff between throughput and certain QOS requirements. The model involves a piece-wise linear approximation to the capacity allocation rule for variable bit rate connections statistically multiplexed over a VP.Both models are formulated as integer programs. The solution method developed employ relaxation and aggregation of variables, feasible solution heuristics and valid inequalities. The results of the computational experiments presented indicate that the methods developed are efficient and produce accurate solutions

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout

    Campus Telecommunications Systems: Managing Change

    Get PDF
    The purpose of this book is to provide a broadbased understanding of the rapidly changing environment of campus telecommunications. The anticipated audience for this material is the non-technical university administrator who may not have direct responsibility for telecommunications, but has a need to understand the general environment in which his telecommunications manager functions and the basic concepts of the technology. Five topic areas were selected that best cover the preponderance of issues. No attempt has been made to associate or closely coordinate materials from one chapter\u27s subject to that of any other. Each chapter generally stands alone. In total, however, the five chapters address the topics and issues that most often generate inquiries from university administrators outside the telecommunications department. Introduction 1 The Changing Telecommunications Environment 2 Telecommunications Technology and the Campus 3 Student Services 4 Financing a New Telecommunications System . 5 Selecting a Consultant Glossary Inde

    Photovoltaic-powered wireless communication system for rural schools outside national utility grid

    Get PDF
    Access to global information is inarguably one of the key ways of bringing development to any community. In developing worlds, many rural schools lie outside both the Internet Service Provider’s (ISP) cable network and the national utility grid. Rapid developments in information and communication technology (ICT) continue to widen the digital divide between urban and rural schools. In South Africa, although these rural areas are outside the ISP’s cable network, they enjoy excellent mobile (cellular) communications network coverage. Fortunately, leading mobile operators in the country (MTN and Vodacom) have incorporated mobile data packet services into their cellular communication networks since 2002. A stand-alone photovoltaic (PV) system for powering ICT equipment in off grid rural schools was designed and installed; and its performance monitored. Performance of the system was considered in two categories, which are; cost and service performance. In cost performance, return on investment (ROI) and payback period (PB) are the two critical considerations. The PV system designed in this study gave an impressive ROI and PB of 286percent and 5 years, respectively. In order to monitor and evaluate the service performance a data acquisition system (DAS) was designed and installed. Besides proving the potential of PV in powering ICT equipment, results from the DAS also suggested a more efficient way of employing PV as a power source for powering equipment that is based on Switched-Mode Power Supply Units. Concurrent and continuous change in irradiance and temperature result in a four-segment pattern of rising and falling module efficiency throughout the day. Generally, modules produce more energy on cooler sunny days than hotter sunny days. Infrared (IR) Thermography was also used as part of both indoor and outdoor module tests. During indoor tests at pre-deployment stage, IR Thermography showed development of hot spots in mismatched cells of reverse-biased modules. On the outdoors, IR Thermography reiterated the effect of bird droppings on module surfaces by showing hot spots forming on areas covered by the droppings. For internet connectivity, a customized Mobile Internet Device (MIDevice) was designed, built and tested. The device allows remote computer systems to be connected to the Internet via the already existing mobile communication network k using General Packet Radio Services (GPRS). An entire rural school local area network (LAN) can be connected to the Internet via a single MIDevice. An experimental setup was designed in order to monitor and evaluate performance of GPRS in specific and mobile Internet solutions in general. Results obtained proved that GPRS can indeed be a solution for remote Internet connectivity in rural schools. In order to improve performance of GPRS or mobile Internet connections, caching, pop-up blocking and proxy filtering are necessary.Thesis (MSc) -- Faculty of Science and Agriculture, 200

    Photovoltaic-powered wireless communication system for rural schools outside national utility grid

    Get PDF
    Access to global information is inarguably one of the key ways of bringing development to any community. In developing worlds, many rural schools lie outside both the Internet Service Provider’s (ISP) cable network and the national utility grid. Rapid developments in information and communication technology (ICT) continue to widen the digital divide between urban and rural schools. In South Africa, although these rural areas are outside the ISP’s cable network, they enjoy excellent mobile (cellular) communications network coverage. Fortunately, leading mobile operators in the country (MTN and Vodacom) have incorporated mobile data packet services into their cellular communication networks since 2002. A stand-alone photovoltaic (PV) system for powering ICT equipment in off grid rural schools was designed and installed; and its performance monitored. Performance of the system was considered in two categories, which are; cost and service performance. In cost performance, return on investment (ROI) and payback period (PB) are the two critical considerations. The PV system designed in this study gave an impressive ROI and PB of 286percent and 5 years, respectively. In order to monitor and evaluate the service performance a data acquisition system (DAS) was designed and installed. Besides proving the potential of PV in powering ICT equipment, results from the DAS also suggested a more efficient way of employing PV as a power source for powering equipment that is based on Switched-Mode Power Supply Units. Concurrent and continuous change in irradiance and temperature result in a four-segment pattern of rising and falling module efficiency throughout the day. Generally, modules produce more energy on cooler sunny days than hotter sunny days. Infrared (IR) Thermography was also used as part of both indoor and outdoor module tests. During indoor tests at pre-deployment stage, IR Thermography showed development of hot spots in mismatched cells of reverse-biased modules. On the outdoors, IR Thermography reiterated the effect of bird droppings on module surfaces by showing hot spots forming on areas covered by the droppings. For internet connectivity, a customized Mobile Internet Device (MIDevice) was designed, built and tested. The device allows remote computer systems to be connected to the Internet via the already existing mobile communication network k using General Packet Radio Services (GPRS). An entire rural school local area network (LAN) can be connected to the Internet via a single MIDevice. An experimental setup was designed in order to monitor and evaluate performance of GPRS in specific and mobile Internet solutions in general. Results obtained proved that GPRS can indeed be a solution for remote Internet connectivity in rural schools. In order to improve performance of GPRS or mobile Internet connections, caching, pop-up blocking and proxy filtering are necessary.Thesis (MSc) -- Faculty of Science and Agriculture, 200
    • …
    corecore