167 research outputs found

    Visual Distortions in 360-degree Videos.

    Get PDF
    Omnidirectional (or 360°) images and videos are emergent signals being used in many areas, such as robotics and virtual/augmented reality. In particular, for virtual reality applications, they allow an immersive experience in which the user can interactively navigate through a scene with three degrees of freedom, wearing a head-mounted display. Current approaches for capturing, processing, delivering, and displaying 360° content, however, present many open technical challenges and introduce several types of distortions in the visual signal. Some of the distortions are specific to the nature of 360° images and often differ from those encountered in classical visual communication frameworks. This paper provides a first comprehensive review of the most common visual distortions that alter 360° signals going through the different processing elements of the visual communication pipeline. While their impact on viewers' visual perception and the immersive experience at large is still unknown-thus, it is an open research topic-this review serves the purpose of proposing a taxonomy of the visual distortions that can be encountered in 360° signals. Their underlying causes in the end-to-end 360° content distribution pipeline are identified. This taxonomy is essential as a basis for comparing different processing techniques, such as visual enhancement, encoding, and streaming strategies, and allowing the effective design of new algorithms and applications. It is also a useful resource for the design of psycho-visual studies aiming to characterize human perception of 360° content in interactive and immersive applications

    PEA265: Perceptual Assessment of Video Compression Artifacts

    Full text link
    The most widely used video encoders share a common hybrid coding framework that includes block-based motion estimation/compensation and block-based transform coding. Despite their high coding efficiency, the encoded videos often exhibit visually annoying artifacts, denoted as Perceivable Encoding Artifacts (PEAs), which significantly degrade the visual Qualityof- Experience (QoE) of end users. To monitor and improve visual QoE, it is crucial to develop subjective and objective measures that can identify and quantify various types of PEAs. In this work, we make the first attempt to build a large-scale subjectlabelled database composed of H.265/HEVC compressed videos containing various PEAs. The database, namely the PEA265 database, includes 4 types of spatial PEAs (i.e. blurring, blocking, ringing and color bleeding) and 2 types of temporal PEAs (i.e. flickering and floating). Each containing at least 60,000 image or video patches with positive and negative labels. To objectively identify these PEAs, we train Convolutional Neural Networks (CNNs) using the PEA265 database. It appears that state-of-theart ResNeXt is capable of identifying each type of PEAs with high accuracy. Furthermore, we define PEA pattern and PEA intensity measures to quantify PEA levels of compressed video sequence. We believe that the PEA265 database and our findings will benefit the future development of video quality assessment methods and perceptually motivated video encoders.Comment: 10 pages,15 figures,4 table

    Spatial Perceptual Quality Aware Adaptive Volumetric Video Streaming

    Full text link
    Volumetric video offers a highly immersive viewing experience, but poses challenges in ensuring quality of experience (QoE) due to its high bandwidth requirements. In this paper, we explore the effect of viewing distance introduced by six degrees of freedom (6DoF) spatial navigation on user's perceived quality. By considering human visual resolution limitations, we propose a visual acuity model that describes the relationship between the virtual viewing distance and the tolerable boundary point cloud density. The proposed model satisfies spatial visual requirements during 6DoF exploration. Additionally, it dynamically adjusts quality levels to balance perceptual quality and bandwidth consumption. Furthermore, we present a QoE model to represent user's perceived quality at different viewing distances precisely. Extensive experimental results demonstrate that, the proposed scheme can effectively improve the overall average QoE by up to 26% over real networks and user traces, compared to existing baselines.Comment: Accepted byIEEE Globecom 202

    Data-driven visual quality estimation using machine learning

    Get PDF
    Heutzutage werden viele visuelle Inhalte erstellt und sind zugänglich, was auf Verbesserungen der Technologie wie Smartphones und das Internet zurückzuführen ist. Es ist daher notwendig, die von den Nutzern wahrgenommene Qualität zu bewerten, um das Erlebnis weiter zu verbessern. Allerdings sind nur wenige der aktuellen Qualitätsmodelle speziell für höhere Auflösungen konzipiert, sagen mehr als nur den Mean Opinion Score vorher oder nutzen maschinelles Lernen. Ein Ziel dieser Arbeit ist es, solche maschinellen Modelle für höhere Auflösungen mit verschiedenen Datensätzen zu trainieren und zu evaluieren. Als Erstes wird eine objektive Analyse der Bildqualität bei höheren Auflösungen durchgeführt. Die Bilder wurden mit Video-Encodern komprimiert, hierbei weist AV1 die beste Qualität und Kompression auf. Anschließend werden die Ergebnisse eines Crowd-Sourcing-Tests mit einem Labortest bezüglich Bildqualität verglichen. Weiterhin werden auf Deep Learning basierende Modelle für die Vorhersage von Bild- und Videoqualität beschrieben. Das auf Deep Learning basierende Modell ist aufgrund der benötigten Ressourcen für die Vorhersage der Videoqualität in der Praxis nicht anwendbar. Aus diesem Grund werden pixelbasierte Videoqualitätsmodelle vorgeschlagen und ausgewertet, die aussagekräftige Features verwenden, welche Bild- und Bewegungsaspekte abdecken. Diese Modelle können zur Vorhersage von Mean Opinion Scores für Videos oder sogar für anderer Werte im Zusammenhang mit der Videoqualität verwendet werden, wie z.B. einer Bewertungsverteilung. Die vorgestellte Modellarchitektur kann auf andere Videoprobleme angewandt werden, wie z.B. Videoklassifizierung, Vorhersage der Qualität von Spielevideos, Klassifikation von Spielegenres oder der Klassifikation von Kodierungsparametern. Ein wichtiger Aspekt ist auch die Verarbeitungszeit solcher Modelle. Daher wird ein allgemeiner Ansatz zur Beschleunigung von State-of-the-Art-Videoqualitätsmodellen vorgestellt, der zeigt, dass ein erheblicher Teil der Verarbeitungszeit eingespart werden kann, während eine ähnliche Vorhersagegenauigkeit erhalten bleibt. Die Modelle sind als Open Source veröffentlicht, so dass die entwickelten Frameworks für weitere Forschungsarbeiten genutzt werden können. Außerdem können die vorgestellten Ansätze als Bausteine für neuere Medienformate verwendet werden.Today a lot of visual content is accessible and produced, due to improvements in technology such as smartphones and the internet. This results in a need to assess the quality perceived by users to further improve the experience. However, only a few of the state-of-the-art quality models are specifically designed for higher resolutions, predict more than mean opinion score, or use machine learning. One goal of the thesis is to train and evaluate such machine learning models of higher resolutions with several datasets. At first, an objective evaluation of image quality in case of higher resolutions is performed. The images are compressed using video encoders, and it is shown that AV1 is best considering quality and compression. This evaluation is followed by the analysis of a crowdsourcing test in comparison with a lab test investigating image quality. Afterward, deep learning-based models for image quality prediction and an extension for video quality are proposed. However, the deep learning-based video quality model is not practically usable because of performance constrains. For this reason, pixel-based video quality models using well-motivated features covering image and motion aspects are proposed and evaluated. These models can be used to predict mean opinion scores for videos, or even to predict other video quality-related information, such as a rating distributions. The introduced model architecture can be applied to other video problems, such as video classification, gaming video quality prediction, gaming genre classification or encoding parameter estimation. Furthermore, one important aspect is the processing time of such models. Hence, a generic approach to speed up state-of-the-art video quality models is introduced, which shows that a significant amount of processing time can be saved, while achieving similar prediction accuracy. The models have been made publicly available as open source so that the developed frameworks can be used for further research. Moreover, the presented approaches may be usable as building blocks for newer media formats

    Large-Scale Study of Perceptual Video Quality

    Get PDF
    The great variations of videographic skills, camera designs, compression and processing protocols, and displays lead to an enormous variety of video impairments. Current no-reference (NR) video quality models are unable to handle this diversity of distortions. This is true in part because available video quality assessment databases contain very limited content, fixed resolutions, were captured using a small number of camera devices by a few videographers and have been subjected to a modest number of distortions. As such, these databases fail to adequately represent real world videos, which contain very different kinds of content obtained under highly diverse imaging conditions and are subject to authentic, often commingled distortions that are impossible to simulate. As a result, NR video quality predictors tested on real-world video data often perform poorly. Towards advancing NR video quality prediction, we constructed a large-scale video quality assessment database containing 585 videos of unique content, captured by a large number of users, with wide ranges of levels of complex, authentic distortions. We collected a large number of subjective video quality scores via crowdsourcing. A total of 4776 unique participants took part in the study, yielding more than 205000 opinion scores, resulting in an average of 240 recorded human opinions per video. We demonstrate the value of the new resource, which we call the LIVE Video Quality Challenge Database (LIVE-VQC), by conducting a comparison of leading NR video quality predictors on it. This study is the largest video quality assessment study ever conducted along several key dimensions: number of unique contents, capture devices, distortion types and combinations of distortions, study participants, and recorded subjective scores. The database is available for download on this link: http://live.ece.utexas.edu/research/LIVEVQC/index.html
    • …
    corecore