394 research outputs found

    The Achievable Rate of Interweave Cognitive Radio in the Face of Sensing Errors

    Get PDF
    Cognitive radio (CR) systems are potentially capable of mitigating the spectrum shortage of contemporary wireless systems. In this paper, we provide a brief overview of CR systems and the important research milestones of their evolution, along with their standardization activities, as a result of their research. This is followed by the detailed analysis of the interweave policy-based CR network (CRN) and by a detailed comparison with the family of underlay-based CRNs. In the interweave-based CRN, sensing of the primary user's (PU) spectrum by the secondary user's (SU) has remained a challenge, because the sensing errors prevent us from fulfilling the significant throughput gains that the concept of CR promises. Since missed detection and false alarm errors in real-time spectrum sensing cannot be avoided, based on a new approach, we quantify the achievable rates of the interweave CR by explicitly incorporating the effect of sensing errors. The link between the PU transmitter and the SU transmitter is assumed to be fast fading. Explicitly, the achievable rate degradation imposed by the sensing errors is analyzed for two spectrum sensing techniques, namely, for energy detection and for magnitude squared coherence-based detection. It is demonstrated that when the channel is sparsely occupied by the PU, the reusing techniques that are capable of simultaneously providing low missed detection and false alarm probabilities cause only a minor degradation to the achievable rates. Furthermore, based on the achievable rates derived for underlay CRNs, we compare the interweave CR and the underlay CR paradigms from the perspective of their resilience against spectrum sensing errors. Interestingly, in many practical regimes, the interweave CR paradigm outperforms the underlay CR paradigm in the presence of sensing errors, especially when the SNR at the SU is below 10 dB and when the SNR at the PU is in the range of 10-40 dB. Furthermore, we also provide rules of thumb that identify regimes, where the interweave CR outperforms the underlay CR

    Performance Analysis of Cognitive Radio Systems with Imperfect Channel Knowledge

    Get PDF
    An analytical framework is established to characterize the effects such as time allocation and variation, arising due to the incorporation of imperfect channel knowledge, that are detrimental to the performance of the cognitive radio systems. In order to facilitate hardware deployment of a cognitive radio system, received power-based estimation, a novel channel estimation technique is employed for the channels existing between the primary and the secondary systems, thus fulfilling low-complexity and versatility requirements

    Breaking the Area Spectral Efficiency Wall in Cognitive Underlay Networks

    Get PDF
    In this article, we develop a comprehensive analytical framework to characterize the area spectral efficiency of a large scale Poisson cognitive underlay network. The developed framework explicitly accommodates channel, topological and medium access uncertainties. The main objective of this study is to launch a preliminary investigation into the design considerations of underlay cognitive networks. To this end, we highlight two available degrees of freedom, i.e., shaping medium access or transmit power. While from the primary user's perspective tuning either to control the interference is equivalent, the picture is different for the secondary network. We show the existence of an area spectral efficiency wall under both adaptation schemes. We also demonstrate that the adaptation of just one of these degrees of freedom does not lead to the optimal performance. But significant performance gains can be harnessed by jointly tuning both the medium access probability and the transmission power of the secondary networks. We explore several design parameters for both adaptation schemes. Finally, we extend our quest to more complex point-to-point and broadcast networks to demonstrate the superior performance of joint tuning policies

    Power Allocation and Cooperative Diversity in Two-Way Non-Regenerative Cognitive Radio Networks

    Full text link
    In this paper, we investigate the performance of a dual-hop block fading cognitive radio network with underlay spectrum sharing over independent but not necessarily identically distributed (i.n.i.d.) Nakagami-mm fading channels. The primary network consists of a source and a destination. Depending on whether the secondary network which consists of two source nodes have a single relay for cooperation or multiple relays thereby employs opportunistic relay selection for cooperation and whether the two source nodes suffer from the primary users' (PU) interference, two cases are considered in this paper, which are referred to as Scenario (a) and Scenario (b), respectively. For the considered underlay spectrum sharing, the transmit power constraint of the proposed system is adjusted by interference limit on the primary network and the interference imposed by primary user (PU). The developed new analysis obtains new analytical results for the outage capacity (OC) and average symbol error probability (ASEP). In particular, for Scenario (a), tight lower bounds on the OC and ASEP of the secondary network are derived in closed-form. In addition, a closed from expression for the end-to-end OC of Scenario (a) is achieved. With regards to Scenario (b), a tight lower bound on the OC of the secondary network is derived in closed-form. All analytical results are corroborated using Monte Carlo simulation method

    A Distributed Approach to Interference Alignment in OFDM-based Two-tiered Networks

    Full text link
    In this contribution, we consider a two-tiered network and focus on the coexistence between the two tiers at physical layer. We target our efforts on a long term evolution advanced (LTE-A) orthogonal frequency division multiple access (OFDMA) macro-cell sharing the spectrum with a randomly deployed second tier of small-cells. In such networks, high levels of co-channel interference between the macro and small base stations (MBS/SBS) may largely limit the potential spectral efficiency gains provided by the frequency reuse 1. To address this issue, we propose a novel cognitive interference alignment based scheme to protect the macro-cell from the cross-tier interference, while mitigating the co-tier interference in the second tier. Remarkably, only local channel state information (CSI) and autonomous operations are required in the second tier, resulting in a completely self-organizing approach for the SBSs. The optimal precoder that maximizes the spectral efficiency of the link between each SBS and its served user equipment is found by means of a distributed one-shot strategy. Numerical findings reveal non-negligible spectral efficiency enhancements with respect to traditional time division multiple access approaches at any signal to noise (SNR) regime. Additionally, the proposed technique exhibits significant robustness to channel estimation errors, achieving remarkable results for the imperfect CSI case and yielding consistent performance enhancements to the network.Comment: 15 pages, 10 figures, accepted and to appear in IEEE Transactions on Vehicular Technology Special Section: Self-Organizing Radio Networks, 2013. Authors' final version. Copyright transferred to IEE

    In-Building Capacity Enhancement using Small Cells in Mobile Networks: An Overview

    Get PDF
    In this paper, we give an overview of the state-of-the-art research studies to present the potential of small cells to address the high capacity demands of in-building users in mobile networks. In doing so, we discuss relevant theoretical backgrounds and carry out performance evaluations of key enabling technologies along with three major directions toward improving the network capacity, including spectrum accessibility, Spectral Efficiency (SE) improvement, and network densification. For the spectrum accessibility, numerous types of Small Cell Base Station (SBS) architectures of a Mobile Network Operator (MNO) are evaluated. For the SE improvement, cognitive radio techniques are evaluated for the Dynamic Spectrum Sharing (DSS) among multiple MNOs in a country. For the network densification, the spectrum reuse is evaluated at both intra-and inter-building levels for a given Co-Channel Interference (CCI) constraint. It is shown that multi-band multi-transceiver enabled small cells operating in the high-frequency millimeter-wave licensed or unlicensed spectrum to realize DSS techniques by exploiting SBS architectures for the spectrum accessibility, a hybrid interweave-underlay spectrum access in Cognitive Radio Networks for the spectral efficiency improvement, and both vertical and horizontal spectrum reuse in small cells deployed densely within buildings for the network densification can address high capacity demand in indoor mobile networks
    corecore