1,249 research outputs found

    The Impact of Speech Recognition Systems on The Productivity and The Workflow in Radiology Departments: A Systematic Review

    Get PDF
    Speech Recognition dictation systems are becoming more popular and provide a viable alternative to conventional transcription services. On the other hand, there is a scarcity in the studies that address the impact of speech recognition on productivity and the workflow in the radiology department. To review the most updated literature in the past 10 years regarding the effects of Speech Recognition systems on the productivity and workflow of radiology departments. A systematic literature review was done using PRISMA, including 14 articles in total, and they were divided into four main themes. The finding confirmed the positive effect of Speech Recognition on departmental productivity, with decreased report turnaround time and an increase in the number of reports available per unit of time

    A systematic review of speech recognition technology in health care

    Get PDF
    BACKGROUND To undertake a systematic review of existing literature relating to speech recognition technology and its application within health care. METHODS A systematic review of existing literature from 2000 was undertaken. Inclusion criteria were: all papers that referred to speech recognition (SR) in health care settings, used by health professionals (allied health, medicine, nursing, technical or support staff), with an evaluation or patient or staff outcomes. Experimental and non-experimental designs were considered. Six databases (Ebscohost including CINAHL, EMBASE, MEDLINE including the Cochrane Database of Systematic Reviews, OVID Technologies, PreMED-LINE, PsycINFO) were searched by a qualified health librarian trained in systematic review searches initially capturing 1,730 references. Fourteen studies met the inclusion criteria and were retained. RESULTS The heterogeneity of the studies made comparative analysis and synthesis of the data challenging resulting in a narrative presentation of the results. SR, although not as accurate as human transcription, does deliver reduced turnaround times for reporting and cost-effective reporting, although equivocal evidence of improved workflow processes. CONCLUSIONS SR systems have substantial benefits and should be considered in light of the cost and selection of the SR system, training requirements, length of the transcription task, potential use of macros and templates, the presence of accented voices or experienced and in-experienced typists, and workflow patterns.Funding for this study was provided by the University of Western Sydney. NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program. NICTA is also funded and supported by the Australian Capital Territory, the New South Wales, Queensland and Victorian Governments, the Australian National University, the University of New South Wales, the University of Melbourne, the University of Queensland, the University of Sydney, Griffith University, Queensland University of Technology, Monash University and other university partners

    Increasing the Efficiency on Producing Radiology Reports for Breast Cancer Diagnosis by Means of Structured Reports

    Full text link
    Background: Radiology reports are commonly written on free-text using voice recognition devices. Structured reports (SR) have a high potential but they are usually considered more difficult to fill-in so their adoption in clinical practice leads to a lower efficiency. However, some studies have demonstrated that in some cases, producing SRs may require shorter time than plain-text ones. This work focuses on the definition and demonstration of a methodology to evaluate the productivity of software tools for producing radiology reports. A set of SRs for breast cancer diagnosis based on BI-RADS have been developed using this method. An analysis of their efficiency with respect to free-text reports has been performed. Material and Methods: The methodology proposed compares the Elapsed Time (ET) on a set of radiological reports. Free-text reports are produced with the speech recognition devices used in the clinical practice. Structured reports are generated using a web application generated with TRENCADIS framework. A team of six radiologists with three different levels of experience in the breast cancer diagnosis was recruited. These radiologists performed the evaluation, each one introducing 50 reports for mammography, 50 for ultrasound scan and 50 for MRI using both approaches. Also, the Relative Efficiency (REF) was computed for each report, dividing the ET of both methods. We applied the T-Student (T-S) test to compare the ETs and the ANOVA test to compare the REFs. Both tests were computed using the SPSS software. Results: The study produced three DICOM-SR templates for Breast Cancer Diagnosis on mammography, ultrasound and MRI, using RADLEX terms based on BIRADs 5th edition. The T-S test on radiologists with high or intermediate profile, showed that the difference between the ET was only statistically significant for mammography and ultrasound. The ANOVA test performed grouping the REF by modalities, indicated that there were no significant differences between mammograms and ultrasound scans, but both have significant statistical differences with MRI. The ANOVA test of the REF for each modality, indicated that there were only significant differences in Mammography (ANOVA p = 0.024) and Ultrasound (ANOVA p = 0.008). The ANOVA test for each radiologist profile, indicated that there were significant differences on the high profile (ANOVA p = 0.028) and medium (ANOVA p = 0.045). Conclusions: In this work, we have defined and demonstrated a methodology to evaluate the productivity of software tools for producing radiology reports in Breast Cancer. We have evaluated that adopting Structured Reporting in mammography and ultrasound studies in breast cancer diagnosis improves the performance in producing reports.INDIGO - DataCloud receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement RIA 653549.Segrelles Quilis, JD.; Medina, R.; Blanquer Espert, I.; Marti Bonmati, L. (2017). Increasing the Efficiency on Producing Radiology Reports for Breast Cancer Diagnosis by Means of Structured Reports. Methods of Information in Medicine. 56:1-13. https://doi.org/10.3414/ME16-01-0091S1135

    The Challenges, Opportunities, and Imperative of Structured Reporting in Medical Imaging

    Get PDF
    Despite dramatic innovation in medical imaging and information system technologies, the radiology report has remained stagnant for more than a century. Structured reporting was created in the hopes of addressing well-documented deficiencies in report content and organization but has largely failed in its adoption due to concerns over workflow and productivity. A number of political, economical, and clinical quality-centric initiatives are currently taking place within medicine which will dramatically change the medical landscape including Pay for Performance, Evidence-Based Medicine, and the Physician Quality Reporting Initiative. These will collectively enhance efforts to improve quality in reporting, stimulate new technology development, and counteract the impending threat of commoditization within radiology. Structured reporting offers a number of unique opportunities and advantages over traditional free text reporting and will provide a means for the radiology community to add value to its most important service deliverable the radiology report

    A Filmless Radiology Department in a Full Digital Regional Hospital: Quantitative Evaluation of the Increased Quality and Efficiency

    Get PDF
    Reggio Emilia hospital installed Picture Archiving and Communications Systems (PACS) as the final step towards a completely digital clinical environment completing the HIS/EMR and 1,400 web/terminals for patient information access. Financial benefits throughout the hospital were assessed upfront and measured periodically. Key indicators (radiology exam turnaround time, number of radiology procedures performed, inpatients length of stay before and after the PACS implementation, etc.) were analyzed and values were statistically tested to assess workflow and productivity improvements. The hospital went “filmless” in 28 weeks. Between the half of 2004 and the respective period in 2003, overall Radiology Department productivity increased by 12%, TAT improved by more than 60%. Timelier patient care resulted in decreased lengths of stay. Neurology alone experienced a 12% improvement in average patient stay. To quantify the impact of PACS on the average hospital stays and the expected productivity benefits to inpatient productivity were used a “high level” and a “detailed” business model. Annual financial upsides have exceeded $1.9 millions/year. A well-planned PACS deployment simplifies imaging workflow and improves patient care throughout the hospital while delivering substantial financial benefits. Staff buy-in was the key in this process and on-going training and process monitoring are a must

    Data infrastructures and digital labour : the case of teleradiology

    Get PDF
    In this thesis, I investigate the effects of digitalisation in teleradiology, the practice of outsourcing radiology diagnosis, through an analysis of the role of infrastructures that enable the transfer, storage, and processing of digital medical data. Consisting of standards, code, protocols and hardware, these infrastructures contribute to the making of complex supply chains that intervene into existing labour processes and produce interdependent relations among radiologists, patients, data engineers, and auxiliary workers. My analysis focuses on three key infrastructures that facilitate teleradiology: Picture Archiving and Communication Systems (PACS), the Digital Imaging and Communication in Medicine (DICOM) standard, and the Health Level 7 (HL7) standard. PACS is a system of four interconnected components: imaging hardware, a secure network, viewing stations for reading images, and data storage facilities. All of these components use DICOM, which specifies data formats and network protocols for the transfer of data within PACS. HL7 is a standard that defines data structures for the purposes of transfer between medical information systems. My research draws on fieldwork in teleradiology companies in Sydney, Australia, and Bangalore, India, which specialise in international outsourcing of medical imaging diagnostics and provide services for hospitals in Europe, USA, and Singapore, among others. I argue that PACS, DICOM, and HL7 establish a technopolitical context that erodes boundaries between social institutions of labour management and material infrastructures of data control. This intertwining of bureaucratic and infrastructural modes of regulation gives rise to a variety of strategies deployed by companies for maximising productivity, as well as counter-strategies of workers in leveraging mobility and qualifications to their advantage
    • …
    corecore